980 resultados para Aquatic ecology.
Resumo:
Carbon and nitrogen stable isotope ratios of amino acids (δ13CAA and δ15NAA) have been recently used to unravel trophic relationships in aquatic and terrestrial environments. However, none have studied the specific case of a symbiotic relationship. Here we use the stable isotope ratios of amino acids (AAs) to investigate the link between a scarab larva (Pericoptustruncatus) and its mite guest (Mumulaelaps, Mesostigmata: Laelapidae: Hypoaspidini). Five scenarios for the relationship between larva and mite were proposed and δ13CAA and δ15NAA respective data and patterns helped eliminate those that were inconsistent. The calculated gap of two trophic levels ruled out a parasitic trophic relationship scenario. The trophic relationship between P. truncatus was shown to most likely be commensalistic with the mites feeding on the larva's castings. Alongside this study, a comparison with the stable isotope bulk analysis method was made and demonstrated that the AA method brings a significant refinement to the results by providing a means of determining absolute tropic level without the need for prior knowledge of the isotopic composition of primary source material.
Resumo:
Plastic debris is a widespread contaminant, prevalent in aquatic ecosystems across the globe. Zooplankton readily ingest microscopic plastic (microplastic, < 1 mm), which are later egested within their faecal pellets. These pellets are a source of food for marine organisms, and contribute to the oceanic vertical flux of particulate organic matter as part of the biological pump. The effects of microplastics on faecal pellet properties are currently unknown. Here we test the hypotheses that (1) faecal pellets are a vector for transport of microplastics, (2) polystyrene microplastics can alter the properties and sinking rates of zooplankton egests and, (3) faecal pellets can facilitate the transfer of plastics to coprophagous biota. Following exposure to 20.6 μm polystyrene microplastics (1000 microplastics mL–1) and natural prey (∼1650 algae mL–1) the copepod Calanus helgolandicus egested faecal pellets with significantly (P < 0.001) reduced densities, a 2.25-fold reduction in sinking rates, and a higher propensity for fragmentation. We further show that microplastics, encapsulated within egests of the copepod Centropages typicus, could be transferred to C. helgolandicus via coprophagy. Our results support the proposal that sinking faecal matter represents a mechanism by which floating plastics can be vertically transported away from surface waters.
Resumo:
1.Methods of sensitivity assessment to identify species and habitats in need of management or protection have been available since the 1970s. 2.The approach to sensitivity assessment adopted by the Marine Life Information Network (MarLIN) assumes that the sensitivity of a community or biotope is dependent on the species within it. However, the application of this approach to sedimentary communities, especially offshore, is complex because of a lack of knowledge of the structural or functional role of many sedimentary species. 3.This paper describes a method to assess the overall sensitivity of sedimentary communities, based on the intolerance and recoverability of component species to physical disturbance. A range of methods were applied to identify the best combinations of abundant, dominant or high biomass species for the assessment of sensitivity in the sedimentary communities examined. 4.Results showed that reporting the most frequent species' sensitivity assessment, irrespective of the four methods used to select species, consistently underestimated the total sensitivity of the community. In contrast, reporting the most sensitive assessment from those species selected resulted in a range of biotope sensitivities from very low to very high, that was better able to discriminate between the sensitivities of the communities examined. 5.The assumptions behind the methodology, its limitations and potential application are discussed.
Resumo:
The authors propose a new phyiosociologic interpretation of Juniperas comniunis subsp. hemisphaerica and Juniperus sabina shrublands in the Djurdjura. They make up two new associations: the Cynosuro balansae-Juniperetun, hemisphaericae and the Daphno oleoidis-Juniperetum sabinae, belonging to the new alliance Lonicero kabylicae-Juniperion hemisphaericae included in the order Querco Cedretalia atlanticae. The ecologic and biogeograpbic value of these communities is analized in a Westem-mediterrancan context as well as their dynamic importance. On this mountain, they correspond to ihe preforested level of cedar forests. For this reason, an attempt to inlerprel Kabylian cedar forests as a whole was made they belong to the new association Senecio perralderlani-Cedretum atlanticae. A diachronic evaluation of changes in native plant communities over a 30 year period is made, in particular as related to the creation of several local structures to protect natural resources.
Resumo:
The distribution and ecology of Brassica oleracea in the atlantic coasts of Iberian Peninsule are studied. A new association or nitrified maritime cliffs is described: Crithmo-Brassicetum oleraceae. This community has been included in the Alliance Crithmo-Armerion due to the high presence of halophitic species.
Resumo:
The nonrecombinant, uniparentally inherited nature of organelle genomes
makes them useful tools for evolutionary studies. However, in plants, detecting
useful polymorphism at the population level is often difficult because of the
low level of substitutions in the chloroplast genome, and because of the slow
substitution rates and intramolecular recombination of mtDNA. Chloroplast
microsatellites represent potentially useful markers to circumvent this problem
and, to date, studies have demonstrated high levels of intraspecific variability.
Here,we discuss the use of these markers in ecological and evolutionary
studies of plants, as well as highlighting some of the potential problems
associated with such use.
Resumo:
The European lobster is distributed throughout the south and western regions of the Norwegian coast. A previous lobster allozyme investigation (1993) in the Tysfjord region, north of the Arctic Circle demonstrated that the lobster population from this region was genetically different from lobster samples collected in other parts of Norway. More detailed investigation including supplementary extensive sampling and additional allozyme, microsatellite and mtDNA analyses are reported here. This investigation supports the genetic distinctness of the Tysfjord population and shows that this is mainly due to a reduction (60�70%) in gene diversity (observed heterozygosities and number of alleles) compared with lobsters from more southern regions. In addition to the Tysfjord region, the comprehensive sampling also included lobsters found in the adjacent Nordfolda fjord system. Genetic analyses provided evidence for significant differences between the lobster populations of Tysfjord and Nordfolda, even though they are separated by a coastal distance of only 142 km. The two populations were also different with regards to several biological characteristics such as body size. The genetic difference between these two geographically close populations is likely to be due to the local hydrological conditions, preventing larval dispersal between the fjord systems. Assessment of lobster abundance in the north-west region suggests that the sub-arctic lobster populations are geographically isolated.
Resumo:
Macroalgal epiphytes within seagrass meadows make a significant contribution to total primary production by assimilating water column N and transferring organic N to sediments. Assimilation of NO3 – requires nitrate reductase (NR, EC 1.6.6.1); NR activity represents the capacity for NO3 – assimilation. An optimised in vitro assay for determining NR activity in algal extracts was applied to a wide range of macroalgae and detected NR activity in all 22 species tested with activity 2 to 290 nmolNO3 – min–1 g–1 frozen thallus. With liquid-N2 freezing immediately after sample collection, this method was practical for estimating NR activity in field samples. Vertical distribution of NR activity in macroalgal epiphytes was compared in contrasting Posidonia sinuosa and Amphibolis antarctica seagrass meadows. Epiphytes on P. sinuosa had higher mass-specific NR activity than those on A. antarctica. In P. sinuosa canopies, NR activity increased with distance from the sediment surface and was negatively correlated with [NH4 +] in the water but uncorrelated with [NO3 –]. This supported the hypothesis that NH4 + released from the sediment suppresses NR in epiphytic algae. In contrast, the vertical variation in NR activity in macroalgae on A. antarctica was not statistically significant although there was a weak correlation with [NO3 –], which increased with distance from the sediment. Estimated capacities for NO3 – assimilation in macroalgae epiphytic on seagrasses during summer (24 and 46 mmolN m–2 d–1 for P. sinuosa and A. antarctica, respectively) were more than twice the estimated N assimilation rates in similar seagrasses. When the estimates were based on annual average epiphyte loads for seagrass meadows in other locations, they were comparable to those of seagrasses. We conclude that epiphytic algae represent a potentially important sink for water-column nitrate within seagrass meadows.
Resumo:
Nitrate and phosphate uptake mechanisms have been characterised under conditions of 100 and 50% seawater in 3 common brown algae of NW Europe: Fucus vesiculosus, F. serratus and Laminaria digitata. Under low salinity, the growth rate and internal nitrate accumulation of F. serratus significantly increased (20 and 48%, respectively), but no significant changes were observed for F. vesiculosus and L. digitata. However, nitrate uptake rates were reduced in L. digitata, so that this species was less adaptable to low salinity than the Fucus species. Both F. vesiculosus and F. serratus reached a steady-state uptake rate after acclimation regardless of the salinity treatment. All 3 species had a high capacity for storing inorganic N and P intracellularly. The results for F. serratus pointed to a dual mechanism of adaptation to the special characteristics of the intertidal environment where it grows. Non-saturating (low affinity) nitrate uptake and biphasic (double Michaelis-Menten curve) phosphate uptake are adaptations to high nutrient concentrations. Temporal partition of cellular energy for carbon metabolism and nutrient uptake is also suggested as an adaptation to the transient nutrient inputs occurring in these environments.