891 resultados para Approximation algorithms
Resumo:
Intensity and volume of training in Artisti Gymnastics are increasing as the sooner athlete's age of incorporation creating some disturbance in them.
Resumo:
In this article, a novel approach to deal with the design of in-building wireless networks deployments is proposed. This approach known as MOQZEA (Multiobjective Quality Zone Based Evolutionary Algorithm) is a hybr id evolutionary algorithm adapted to use a novel fitness function, based on the definition of quality zones for the different objective functions considered. This approach is conceived to solve wireless network design problems without previous information of the required number of transmitters, considering simultaneously a high number of objective functions and optimizing multiple configuration parameters of the transmitters.
Resumo:
La relación entre la ingeniería y la medicina cada vez se está haciendo más estrecha, y debido a esto se ha creado una nueva disciplina, la bioingeniería, ámbito en el que se centra el proyecto. Este ámbito cobra gran interés debido al rápido desarrollo de nuevas tecnologías que en particular permiten, facilitan y mejoran la obtención de diagnósticos médicos respecto de los métodos tradicionales. Dentro de la bioingeniería, el campo que está teniendo mayor desarrollo es el de la imagen médica, gracias al cual se pueden obtener imágenes del interior del cuerpo humano con métodos no invasivos y sin necesidad de recurrir a la cirugía. Mediante métodos como la resonancia magnética, rayos X, medicina nuclear o ultrasonidos, se pueden obtener imágenes del cuerpo humano para realizar diagnósticos. Para que esas imágenes puedan ser utilizadas con ese fin hay que realizar un correcto tratamiento de éstas mediante técnicas de procesado digital. En ése ámbito del procesado digital de las imágenes médicas es en el que se ha realizado este proyecto. Gracias al desarrollo del tratamiento digital de imágenes con métodos de extracción de información, mejora de la visualización o resaltado de rasgos de interés de las imágenes, se puede facilitar y mejorar el diagnóstico de los especialistas. Por todo esto en una época en la que se quieren automatizar todos los procesos para mejorar la eficacia del trabajo realizado, el automatizar el procesado de las imágenes para extraer información con mayor facilidad, es muy útil. Actualmente una de las herramientas más potentes en el tratamiento de imágenes médicas es Matlab, gracias a su toolbox de procesado de imágenes. Por ello se eligió este software para el desarrollo de la parte práctica de este proyecto, su potencia y versatilidad simplifican la implementación de algoritmos. Este proyecto se estructura en dos partes. En la primera se realiza una descripción general de las diferentes modalidades de obtención de imágenes médicas y se explican los diferentes usos de cada método, dependiendo del campo de aplicación. Posteriormente se hace una descripción de las técnicas más importantes de procesado de imagen digital que han sido utilizadas en el proyecto. En la segunda parte se desarrollan cuatro aplicaciones en Matlab para ejemplificar el desarrollo de algoritmos de procesado de imágenes médicas. Dichas implementaciones demuestran la aplicación y utilidad de los conceptos explicados anteriormente en la parte teórica, como la segmentación y operaciones de filtrado espacial de la imagen, así como otros conceptos específicos. Las aplicaciones ejemplo desarrolladas han sido: obtención del porcentaje de metástasis de un tejido, diagnóstico de las deformidades de la columna vertebral, obtención de la MTF de una cámara de rayos gamma y medida del área de un fibroadenoma de una ecografía de mama. Por último, para cada una de las aplicaciones se detallará su utilidad en el campo de la imagen médica, los resultados obtenidos y su implementación en una interfaz gráfica para facilitar su uso. ABSTRACT. The relationship between medicine and engineering is becoming closer than ever giving birth to a recently appeared science field: bioengineering. This project is focused on this subject. This recent field is becoming more and more important due to the fast development of new technologies that provide tools to improve disease diagnosis, with regard to traditional procedures. In bioengineering the fastest growing field is medical imaging, in which we can obtain images of the inside of the human body without need of surgery. Nowadays by means of the medical modalities of magnetic resonance, X ray, nuclear medicine or ultrasound, we can obtain images to make a more accurate diagnosis. For those images to be useful within the medical field, they should be processed properly with some digital image processing techniques. It is in this field of digital medical image processing where this project is developed. Thanks to the development of digital image processing providing methods for data collection, improved visualization or data highlighting, diagnosis can be eased and facilitated. In an age where automation of processes is much sought, automated digital image processing to ease data collection is extremely useful. One of the most powerful image processing tools is Matlab, together with its image processing toolbox. That is the reason why that software was chosen to develop the practical algorithms in this project. This final project is divided into two main parts. Firstly, the different modalities for obtaining medical images will be described. The different usages of each method according to the application will also be specified. Afterwards we will give a brief description of the most important image processing tools that have been used in the project. Secondly, four algorithms in Matlab are implemented, to provide practical examples of medical image processing algorithms. This implementation shows the usefulness of the concepts previously explained in the first part, such as: segmentation or spatial filtering. The particular applications examples that have been developed are: calculation of the metastasis percentage of a tissue, diagnosis of spinal deformity, approximation to the MTF of a gamma camera, and measurement of the area of a fibroadenoma in an ultrasound image. Finally, for each of the applications developed, we will detail its usefulness within the medical field, the results obtained, and its implementation in a graphical user interface to ensure ease of use.
Resumo:
This paper describes the objectives, content, learning methodology and results of an online course on the History of Algorithms for engineering students at Polytechnic University of Madrid (UPM). This course is conducted in a virtual environment based on Moodle, with a student-centred educational model which includes a detailed planning of learning activities. Our experience indicates that this subject is highly motivating for students and the virtual environment facilitates competencies development
Resumo:
Plant diseases represent a major economic and environmental problem in agriculture and forestry. Upon infection, a plant develops symptoms that affect different parts of the plant causing a significant agronomic impact. As many such diseases spread in time over the whole crop, a system for early disease detection can aid to mitigate the losses produced by the plant diseases and can further prevent their spread [1]. In recent years, several mathematical algorithms of search have been proposed [2,3] that could be used as a non-invasive, fast, reliable and cost-effective methods to localize in space infectious focus by detecting changes in the profile of volatile organic compounds. Tracking scents and locating odor sources is a major challenge in robotics, on one hand because odour plumes consists of non-uniform intermittent odour patches dispersed by the wind and on the other hand because of the lack of precise and reliable odour sensors. Notwithstanding, we have develop a simple robotic platform to study the robustness and effectiveness of different search algorithms [4], with respect to specific problems to be found in their further application in agriculture, namely errors committed in the motion and sensing and to the existence of spatial constraints due to land topology or the presence of obstacles.
Resumo:
A quasi-cylindrical approximation is used to analyse the axisymmetric swirling flow of a liquid with a hollow air core in the chamber of a pressure swirl atomizer. The liquid is injected into the chamber with an azimuthal velocity component through a number of slots at the periphery of one end of the chamber, and flows out as an anular sheet through a central orifice at the other end, following a conical convergence of the chamber wall. An effective inlet condition is used to model the effects of the slots and the boundary layer that develops at the nearby endwall of the chamber. An analysis is presented of the structure of the liquid sheet at the end of the exit orifice, where the flow becomes critical in the sense that upstream propagation of long-wave perturbations ceases to be possible. This nalysis leads to a boundary condition at the end of the orifice that is an extension of the condition of maximum flux used with irrotational models of the flow. As is well known, the radial pressure gradient induced by the swirling flow in the bulk of the chamber causes the overpressure that drives the liquid towards the exit orifice, and also leads to Ekman pumping in the boundary layers of reduced azimuthal velocity at the convergent wall of the chamber and at the wall opposite to the exit orifice. The numerical results confirm the important role played by the boundary layers. They make the thickness of the liquid sheet at the end of the orifice larger than predicted by rrotational models, and at the same time tend to decrease the overpressure required to pass a given flow rate through the chamber, because the large axial velocity in the boundary layers takes care of part of the flow rate. The thickness of the boundary layers increases when the atomizer constant (the inverse of a swirl number, proportional to the flow rate scaled with the radius of the exit orifice and the circulation around the air core) decreases. A minimum value of this parameter is found below which the layer of reduced azimuthal velocity around the air core prevents the pressure from increasing and steadily driving the flow through the exit orifice. The effects of other parameters not accounted for by irrotational models are also analysed in terms of their influence on the boundary layers.
Resumo:
The diversity of bibliometric indices today poses the challenge of exploiting the relationships among them. Our research uncovers the best core set of relevant indices for predicting other bibliometric indices. An added difficulty is to select the role of each variable, that is, which bibliometric indices are predictive variables and which are response variables. This results in a novel multioutput regression problem where the role of each variable (predictor or response) is unknown beforehand. We use Gaussian Bayesian networks to solve the this problem and discover multivariate relationships among bibliometric indices. These networks are learnt by a genetic algorithm that looks for the optimal models that best predict bibliometric data. Results show that the optimal induced Gaussian Bayesian networks corroborate previous relationships between several indices, but also suggest new, previously unreported interactions. An extended analysis of the best model illustrates that a set of 12 bibliometric indices can be accurately predicted using only a smaller predictive core subset composed of citations, g-index, q2-index, and hr-index. This research is performed using bibliometric data on Spanish full professors associated with the computer science area.
Resumo:
Mixtures of polynomials (MoPs) are a non-parametric density estimation technique especially designed for hybrid Bayesian networks with continuous and discrete variables. Algorithms to learn one- and multi-dimensional (marginal) MoPs from data have recently been proposed. In this paper we introduce two methods for learning MoP approximations of conditional densities from data. Both approaches are based on learning MoP approximations of the joint density and the marginal density of the conditioning variables, but they differ as to how the MoP approximation of the quotient of the two densities is found. We illustrate and study the methods using data sampled from known parametric distributions, and we demonstrate their applicability by learning models based on real neuroscience data. Finally, we compare the performance of the proposed methods with an approach for learning mixtures of truncated basis functions (MoTBFs). The empirical results show that the proposed methods generally yield models that are comparable to or significantly better than those found using the MoTBF-based method.
Resumo:
Multi-dimensional classification (MDC) is the supervised learning problem where an instance is associated with multiple classes, rather than with a single class, as in traditional classification problems. Since these classes are often strongly correlated, modeling the dependencies between them allows MDC methods to improve their performance – at the expense of an increased computational cost. In this paper we focus on the classifier chains (CC) approach for modeling dependencies, one of the most popular and highest-performing methods for multi-label classification (MLC), a particular case of MDC which involves only binary classes (i.e., labels). The original CC algorithm makes a greedy approximation, and is fast but tends to propagate errors along the chain. Here we present novel Monte Carlo schemes, both for finding a good chain sequence and performing efficient inference. Our algorithms remain tractable for high-dimensional data sets and obtain the best predictive performance across several real data sets.
Resumo:
One of the most promising areas in which probabilistic graphical models have shown an incipient activity is the field of heuristic optimization and, in particular, in Estimation of Distribution Algorithms. Due to their inherent parallelism, different research lines have been studied trying to improve Estimation of Distribution Algorithms from the point of view of execution time and/or accuracy. Among these proposals, we focus on the so-called distributed or island-based models. This approach defines several islands (algorithms instances) running independently and exchanging information with a given frequency. The information sent by the islands can be either a set of individuals or a probabilistic model. This paper presents a comparative study for a distributed univariate Estimation of Distribution Algorithm and a multivariate version, paying special attention to the comparison of two alternative methods for exchanging information, over a wide set of parameters and problems ? the standard benchmark developed for the IEEE Workshop on Evolutionary Algorithms and other Metaheuristics for Continuous Optimization Problems of the ISDA 2009 Conference. Several analyses from different points of view have been conducted to analyze both the influence of the parameters and the relationships between them including a characterization of the configurations according to their behavior on the proposed benchmark.
Resumo:
Monte Carlo (MC) methods are widely used in signal processing, machine learning and stochastic optimization. A well-known class of MC methods are Markov Chain Monte Carlo (MCMC) algorithms. In this work, we introduce a novel parallel interacting MCMC scheme, where the parallel chains share information using another MCMC technique working on the entire population of current states. These parallel ?vertical? chains are led by random-walk proposals, whereas the ?horizontal? MCMC uses a independent proposal, which can be easily adapted by making use of all the generated samples. Numerical results show the advantages of the proposed sampling scheme in terms of mean absolute error, as well as robustness w.r.t. to initial values and parameter choice.
Resumo:
This paper is framed within the problem of analyzing the rationality of the components of two classical geometric constructions, namely the offset and the conchoid to an algebraic plane curve and, in the affirmative case, the actual computation of parametrizations. We recall some of the basic definitions and main properties on offsets (see [13]), and conchoids (see [15]) as well as the algorithms for parametrizing their rational components (see [1] and [16], respectively). Moreover, we implement the basic ideas creating two packages in the computer algebra system Maple to analyze the rationality of conchoids and offset curves, as well as the corresponding help pages. In addition, we present a brief atlas where the offset and conchoids of several algebraic plane curves are obtained, their rationality analyzed, and parametrizations are provided using the created packages.
Resumo:
Genetic algorithms (GA) have been used for the minimization of the aerodynamic drag of a train subject to front wind. The significant importance of the external aerodynamic drag on the total resistance a train experiments as the cruise speed is increased highlights the interest of this study. A complete description of the methodology required for this optimization method is introduced here, where the parameterization of the geometry to be optimized and the metamodel used to speed up the optimization process are detailed. A reduction of about a 25% of the initial aerodynamic drag is obtained in this study, what confirms GA as a proper method for this optimization problem. The evolution of the nose shape is consistent with the literature. The advantage of using metamodels is stressed thanks to the information of the whole design space extracted from it. The influence of each design variable on the objective function is analyzed by means of an ANOVA test.
Resumo:
PAMELA (Phased Array Monitoring for Enhanced Life Assessment) SHMTM System is an integrated embedded ultrasonic guided waves based system consisting of several electronic devices and one system manager controller. The data collected by all PAMELA devices in the system must be transmitted to the controller, who will be responsible for carrying out the advanced signal processing to obtain SHM maps. PAMELA devices consist of hardware based on a Virtex 5 FPGA with a PowerPC 440 running an embedded Linux distribution. Therefore, PAMELA devices, in addition to the capability of performing tests and transmitting the collected data to the controller, have the capability of perform local data processing or pre-processing (reduction, normalization, pattern recognition, feature extraction, etc.). Local data processing decreases the data traffic over the network and allows CPU load of the external computer to be reduced. Even it is possible that PAMELA devices are running autonomously performing scheduled tests, and only communicates with the controller in case of detection of structural damages or when programmed. Each PAMELA device integrates a software management application (SMA) that allows to the developer downloading his own algorithm code and adding the new data processing algorithm to the device. The development of the SMA is done in a virtual machine with an Ubuntu Linux distribution including all necessary software tools to perform the entire cycle of development. Eclipse IDE (Integrated Development Environment) is used to develop the SMA project and to write the code of each data processing algorithm. This paper presents the developed software architecture and describes the necessary steps to add new data processing algorithms to SMA in order to increase the processing capabilities of PAMELA devices.An example of basic damage index estimation using delay and sum algorithm is provided.
Resumo:
Nowadays, devices that monitor the health of structures consume a lot of power and need a lot of time to acquire, process, and send the information about the structure to the main processing unit. To decrease this time, fast electronic devices are starting to be used to accelerate this processing. In this paper some hardware algorithms implemented in an electronic logic programming device are described. The goal of this implementation is accelerate the process and diminish the information that has to be send. By reaching this goal, the time the processor needs for treating all the information is reduced and so the power consumption is reduced too.