Orthogonal MCMC algorithms


Autoria(s): Martino, Luca; Elvira Arregui, Víctor; Luengo García, David; Artés Rodríguez, Antonio; Corander, Jukka
Data(s)

2014

Resumo

Monte Carlo (MC) methods are widely used in signal processing, machine learning and stochastic optimization. A well-known class of MC methods are Markov Chain Monte Carlo (MCMC) algorithms. In this work, we introduce a novel parallel interacting MCMC scheme, where the parallel chains share information using another MCMC technique working on the entire population of current states. These parallel ?vertical? chains are led by random-walk proposals, whereas the ?horizontal? MCMC uses a independent proposal, which can be easily adapted by making use of all the generated samples. Numerical results show the advantages of the proposed sampling scheme in terms of mean absolute error, as well as robustness w.r.t. to initial values and parameter choice.

Formato

application/pdf

Identificador

http://oa.upm.es/36434/

Idioma(s)

eng

Publicador

E.T.S.I y Sistemas de Telecomunicación (UPM)

Relação

http://oa.upm.es/36434/1/INVE_MEM_2014_194088.pdf

http://www.ee.unimelb.edu.au/SSP2014/

COMONSENS (CSD2008-00010)

ALCIT (TEC2012-38800-C03-01)

DIS- SECT (TEC2012-38058-C03-01)

COMPREHENSION (TEC2012-38883- C02-01)

Direitos

http://creativecommons.org/licenses/by-nc-nd/3.0/es/

info:eu-repo/semantics/openAccess

Fonte

2014 IEEE Workshop on Statistical Signal Processing (SSP) | 2014 IEEE Workshop on Statistical Signal Processing (SSP 14) | 29/06/2014 - 02/07/2014 | Gold Coast (Australia)

Palavras-Chave #Matemáticas
Tipo

info:eu-repo/semantics/conferenceObject

Ponencia en Congreso o Jornada

PeerReviewed