885 resultados para Antibiotic prescription
Resumo:
利用有益微生物及其代谢产物来防治植物病害,已成为一个十分活跃并具有巨大应用前景的领域。本论文采用土壤预处理等特殊方法,从长白山不同高度的土壤中筛选出1068株放线菌。通过对峙培养法和杯碟法,筛选出D1-1等10株对蔬菜病害菌具有抑制作用的菌株。离体叶片实验中发现D2-4发酵液对黄瓜、辣椒、番茄等蔬菜真菌病害具有一定的防治效果。以水和常用化学农药作为空白和药物对照,对D2-4发酵液进行了盆栽实验,结果对番茄灰霉、辣椒根腐和黄瓜枯萎病的防治效果分别为70.65%、63.27%、65.04%,初步显示出良好的防治效果。通过单因素和均匀设计实验,优化了DZ-4菌发酵培养基的组成,考察了培养时间、接种量、菌龄等对抑菌活性的影响。确定了最佳发酵培养基成分:黄豆饼粉1.10%、葡萄糖2.71%、蔗糖1.00%、NaCl0.10%、酵母膏0.10%、发酵培养基初始pH为6.61。最佳发酵时间为96h左右,培养20~24h的种子液以7%的接种量转接有利于提高抑菌活性。经发酵培养基和发酵条件的优化,发酵液抑菌活性达到了6588 u/ml,比原始发酵培养基(3678 u/ml)活性提高了79.12%。经发酵液的预处理、离子交换层析、吸附柱层析、高效液相色谱纯化等步骤,对D2-4抗生素进行了分离纯化研究。通过纸层析、纸电泳等试验最后确定该农用抗生素为弱碱性水溶性抗生素。对D2-4抗生素纯品进行了红外吸收光谱、紫外吸收光谱等理化性质的研究。
Resumo:
近年的研究表明,海绵微生物是某些海绵天然产物的真正产生者。因此,人们将海绵微生物作为开发海绵天然产物的重要来源之一。采用琼脂块法和液体扩散法,从分离自中国黄渤海大连海域的海绵优势种—繁茂膜海绵的28株放线菌中筛选到4株具有抗菌活性的放线菌,并对它们进行生物学鉴定。采用经典和现代分类鉴定方法,对4株具有抗菌活性的繁茂膜海绵放线菌的形态特征、培养特征、生理生化特征、细胞壁化学组分和16SrRNA序列进行了研究,得出种水平的鉴定结果:Hmp-S14为西唐氏链霉菌Streptomycessetonii;Hmp-S19为灰色链霉菌Streptomyces griseus;Hmp-S24为桔橙小单抱菌Micromonospora aurantiaca;Hmp-S26为生二素链霉菌Streptomyces ambifaciens。在四株具有抗菌活性的繁茂膜海绵放线菌中,菌株Hmp-S19的抗菌活性优于其它三株,并且与已报道的20多种灰色链霉菌菌株有不同的生理生化特性,故进一步优化其发酵条件并初步研究了S19抗菌素的理化性质。通过单因子和均匀设计实验,优化菌株Hmp-S19摇瓶发酵条件。确定最佳发酵培养基:玉米粉0.6%,葡萄糖0.1%,豆饼粉0.5%,NaCl 0.3%,KH2PO40.08%,CaCO30.08%,MgSO40.02%;最佳发酵条件:接种龄30h,接种量5%,初始pH7.0,发酵时间96h,装液量100ml/50ml,培养温度28 ℃。应用二剂量法测定519一抗菌素的相对效价,为5154μ/ml,较原始发酵培养基和发酵条件(3364μ/ml)提高了53%。通过pH纸层析和捷克八溶剂系统纸层析试验,初步判定519抗菌素为两性、非水溶性I型抗菌素。Hmp-S19发酵液经预处理、萃取、硅胶柱层析、制备薄层层析等步骤,对S19抗菌素进行分离纯化得粗制品,并进行了液 相色谱一质谱检测。
Resumo:
链霉菌是十分重要的一类放线菌,绝大多数的抗生素都由该类细菌产生。毛壳属真菌是一类重要的丝状真菌,从中也发现有很多结构新颖、活性独特的活性物质。因此本论文对两株链霉菌的活性成分及一株金毛壳菌的次生代谢产物进行了研究。 1.从吸水链霉菌(Streptomyces hygroscopicus 1.358)液态发酵产物(乙酸乙酯提取物)中分离得到3个化合物,通过波谱方法鉴定为RK955A (1)、Nigericin(2)、Elaiophylin(3)。以青霉素耐药-金黄色葡萄球菌作为指示菌的抗菌活性测定表明,三者均具有较强抗菌活性。 2.通过抗肿瘤体外活性筛选模型筛选得到得到一株链霉属土壤放线菌,从中分离得到六个化合物:苯乙酰胺(4)、苯丙酰胺(5)、肉桂酰胺(6)、3-(N-(甲酰胺基)乙酰基)吲哚(7)、鸟苷磷酸(8)、鸟苷(9)。 3.从金色毛壳菌(Chaetomium aureus)的固态培养物中分离得到13个化合物,利用波谱方法将其鉴定为:金毛壳菌素A(10)、金毛壳菌素B(11)、Eugenetin(12)、Eugenitol(13)、Chaetoquadrin A(14)、Chaetoquadrin B(15)、Chaetoquadrin G(16)、Chaetoquadrin H(17)、Chaetochromin A(18)、Sterigmatocystin(19)、O-methylsterigmatocystin(20)、3β-羟基-麦角甾-5,7,22-三烯(21)和过氧麦角甾醇(22)。 4.综述了聚醚类抗生素的结构、生物合成、生物活性及作用机理。 The genus Streptomyces (Actinomycetes) is an important group of microbe. Most antibiotics known nowdays are discovered from species of Streptomyces. The fungi of the genus Chaetomium have attracted much attention because various kinds of secondary metabolites with diverse bioactivities have been found from them. Thus, the bioactive compounds from two strains of Streptomyces and the secondary metabolites of Chaetomium aureus were investigated. 1. Three compounds were isolated from the ethyl acetate extract of the fermentation broth of Streptomyces hygroscopicus. They are identified to be elaiophylin (1), nigericin (2), and antibiotic RK955A (3) on the basis of their spectroscopic data. Compounds 1-3 possess antibacterial activities against Staphyloccocus aureus. 2. It was found that the extract of the fermented broth of a strain of Actinomycetes could inhibit some tumor cel lines. Separation of the bioactive fraction led to the isolation of six compounds. They were characterized to be phenylacetamide (4), phenylpropylamide (5), trans-cinnamamide (6), 3- (N- (formylmethyl) acetamide) indole (7), guanylicacid (8), and guanosine (9). 3. From the fermented broth of Chaetomium aureus, 13 compounds were isolated for the first time. They were determined to be chaetomiumycin A (10), chaetomiumycin B (11), eugenetin (12), eugenitol (13), chaetoquadrin A (14), chaetoquadrin B (15), chaetoquadrin G (16), chaetoquadrin H (17), chaetochromin A (18), sterigmatocystin (19), O-methylsterigmatocystin (20), 3β-hydroxyergosta-5, 7, 22-triene (21) and peroxy-ergosterol (22). Compounds 10 and 11 are new ones. 4. Structure, biosynthesis, biological activity, and mechanisms of polyether antibiotics were reviewed.
Resumo:
基于广谱抗细菌耐药性这一思路,本研究中心建立了一套抗细菌耐药性化合物的筛选方法。由此从3000多种西南地区特殊生境的微生物和植物样品提取物中筛选获得17个抗细菌耐药性活性样品。对其中一株来自峨嵋山土样的微生物(Aspergillus sp136)进行了深入研究。通过TLC自显影等方法从其发酵产物中追踪分离得到抗耐药有效成分,并鉴定为烟曲霉酸。 采用多种方法对烟曲霉酸的体外抗细菌耐药活性进行评价。在平板扩散法中,烟曲霉酸表现出对青霉素(β-内酰氨抗生素)的协同抗耐药能力,其活性大约3倍于克拉维酸。在MIC的测试实验中,烟曲霉酸表现出对青霉素(β-内酰氨抗生素)以及非β-内酰氨抗生素如红霉素、四环素、氯霉素、链霉素、卡那霉素、庆大霉素的抗耐药能力。在棋盘格杀菌以及时间致死曲线的研究中,烟曲霉酸也表现出对青霉素、红霉素、四环素的协同抗细菌耐药活性。 在广泛的活性筛选中发现烟曲霉酸对LDLR基因具有上调活性,表明烟曲霉酸可能具有降血脂的活性。 在研究中发现,同空白对照相比,烟曲霉酸使耐药菌(Bacillus cereus NCPF63509)细胞外β-内酰胺酶酶活大幅度下降,而细胞内β-内酰胺酶酶活仅略有上升,这表明烟曲霉酸对β-内酰胺酶分泌过程具有抑制作用。 综述了β-内酰胺酶的研究进展。 A two-step agar diffusion method was established to screen wide spectrum synergistic antibacterial agents. By using this method, 17 active samples against antibiotic resistance were discovered from more than 3000 plants and microbes, which were collected from southwest china. One isolate Aspergillus sp136 collected from E-mei mountain area was selected for further studies. From the metabolites of this strain, a synergistic antibacterial compound was isolated by bioautographic TLC assay-guided fractionation and identified as helvolic acid. The synergistic effect of helvolic acid was confirmed by several methods in vitro. The synergistic effect of helvolic acid with penicillin (β-lactam antibiotics) was about 3 times as that of clavulanic acid with penicillin in agar diffusion assay. In MIC studies, helvolic acid exhibited synergistic effects with β-lactam antibiotics such as penicillin and non β-lactam antibiotics such as erythromycin, tetracycline, kanamycin, streptomycin and gentamycin. In checkerboard and time-kill studies, helvolic acid also exhibited synergistic effects with penicillin, erythromycin and tetracycline. In general screen of bioactivities, helvolic acid upregulate LDLR gene, which was indirectly determined by the activity of fluorescent enzyme. Therefore, helvolic acid might have the ability to lower lipid in blood. Compared with blank control, the extracellular β-lactamase activity decrease significantly and the intracellular β-lactamase activity increase slightly in Bacillus cereus NCPF63509 in the presence of helvolic acid, indicating that the secretion of β-lactamase was inhibited by helvolic acid. The research of β-lactamase was reviewed.
Resumo:
毛壳菌属很多种类具有重要生防价值,其生防机理包括对植物病原真菌的重寄生作用、诱导植物产生抗病性、产生抗真菌活性的次生代谢产物等。迄今,学界对毛壳菌的研究主要集中在毛壳菌的生防机理,毛壳菌活性次生代谢产物的分离等方面。本研究致力于产抗生素的毛壳菌的种间原生质体融合,从产抗生素毛壳菌菌株的筛选开始,进而对产抗生素的角毛壳菌进行诱变选育,最终用产不同抗生素的角毛壳菌与球毛壳菌进行种间原生质体融合。主要有以下五方面研究结果。 1、毛壳菌抗真菌活性物质产生菌株的筛选:不同毛壳菌菌株发酵液采用琼脂扩散法对植物病原真菌进行抑菌活性试验,结果显示,菌株CH08和CH23的发酵液对芒果炭疽、苹果炭疽和马铃薯晚疫菌具有抑制作用。菌株CH16和CH17的发酵液对芒果炭疽菌、苹果炭疽菌有抑制作用。菌株CH21发酵液对辣椒炭疽菌和西瓜枯萎菌有抑制作用。经形态学研究,菌株CH08、CH16、CH17和CH23鉴定为球毛壳菌,菌株CH21鉴定为角毛壳菌。对角毛壳菌与球毛壳菌菌株发酵液抑菌谱比较,发现角毛壳菌与球毛壳菌发酵液具有明显不同的抑菌谱,表明角毛壳菌与球毛壳菌产生不同的抗真菌活性物质。 2、角毛壳菌(CH21)和球毛壳菌(CH08)原生质体制备和再生条件研究:考察了菌龄、酶浓度、稳渗剂及其浓度、酶解温度、酶解时间及再生培养基对原生质体制备和再生的影响。用菌龄为生长54 h的角毛壳菌菌丝,以0.06 M磷酸缓冲液(pH6.0)配制成含蜗牛酶15 mg/ml、溶壁酶10 mg/ml、蔗糖0.6 mol/L的酶解液,30℃酶解1.5 h,原生质体释放量2.02×107个/g;以PDA为再生培养基,0.7 mol/L的蔗糖再生稳渗剂,再生率可达51.45%。用菌龄为生长48 h的球毛壳菌菌丝,以0.06 M磷酸缓冲液(pH6.0)配制成含蜗牛酶15 mg/ml、溶壁酶10 mg/ml、蔗糖0.6 mol/L的酶解液,30℃酶解1 h,原生质体释放量达1.57×108个/g;以PDA为再生培养基,0.7 mol/L的蔗糖为再生稳渗剂,再生率可达41.48%。 3、角毛壳菌(CH21)原生质体紫外诱变选育:以CH21为出发菌株,制备原生质体进行紫外诱变,诱变条件为:15 w紫外灯,距离30 cm,照射90 s,致死率80%~85%。建立了诱变菌株初筛的双层平板筛选模型。经平板初筛和摇瓶复筛,获得一株突变菌株CH21-I-402,其发酵液抑菌活性较出发菌株提高18.3%。 4、抗性标记菌株的获得:菌株CH21-I-402和CH08抗生素药敏试验表明, CH21-I-402菌株对潮霉素有抗性、对G418(Geneticin)敏感,菌株CH08对潮霉素和G418都敏感。根癌农杆菌EHA105介导的新霉素磷酸转移酶基因转化球毛壳菌,经PCR检测,新霉素磷酸转移酶基因成功转化进菌株CH08-GR70,CH08-GR120。转化子对G418抗性提高3~4倍,对潮霉素仍然比较敏感。 5、以G418和潮霉素抗性为筛选标记的原生质体融合与融合菌株AFLP分析:制备角毛壳菌CH21-I-402和球毛壳菌CH08-GR70原生质体,以35%的PEG6000为助融剂进行原生质体融合,以65 μg/ml的潮霉素和60 μg/ml G418为抗性筛选标记,获得46个再生菌株。再生菌株连续传代5代后,再生菌株表现出多种形态类型。利用AFLP技术对再生菌株及亲本菌株基因组DNA分析表明,再生菌株PF1、PF26为融合菌株。抑菌活性测试表明,融合菌株PF26发酵液对芒果炭疽菌和苹果轮纹菌有强的抑制作用,且抑菌活性比亲本球毛壳菌明显提高。 Chaetomium spp. have great potentials as biocontrol agents against a range of plant pathogens on the basis of its mycoparasitism, induced plant disease resistance, production of antifungal metabolites, and so on. Previous researches on C. spp. mostly focused on the mechanisms of its biocontrol and the isolation of secondary metabolites. In this study, screening antifungal C. spp., mutation breeding of C. cupreum and interspecies protoplast fusion between C. cupreum and C. globosum were carried out, respectively. The corresponding results are as follows: Firstly, among more than 40 C. spp., the strains produced anti-fungal antibiotics were screened by agar diffusion experiments. Results showed that both CH08 and CH23 had inhibition against Colletotrichum gloeosporioides, Cladosporium fulvum, and Phytophthora infestans. Both CH16 and CH17 had inhibition against Colletotrichum gloeosporioides and Cladosporium fulvum. In addition, CH21 exhibited anti-fungal activity against Fusarium oxysporum f. sp niveum and Colletotrichum capsici. Furthermore, CH08, CH16, CH17 and CH23 were identified as C. globosum, CH21 was proved to be C. cupreum based on morphology. The comparison of the anti-fungal spectrum between C. cupreum and C. globosum, showed they could produce different antibiotics. Secondly, specified protocols for preparing and regenerating protoplasts from mycelia of C. cupreum CH21 and C. globosum CH08 were studied. The effects of the age mycelia, the concentration of enzyme, digestion temperature and time, kinds of osmotic stabilizer and regeneration medium on protoplasts preparation and regeneration were all optimized, respectively. In one protocol, with 15 mg/mL snailase, 10 mg/mL lywallzyme, 0.6 M sucrose, in 0.06 M phosphate buffer (pH6.0), and digested for 1.5 h at 30 ºC, 2.02×107 protoplasts from each gram mycelia were obtained from cultures of C. cupreum CH21 grown in potato dextrose broth (PDB) medium for 54 h. And when 0.7 M sucrose was used as osmotic stabilizer in the regeneration medium OPDA (potato dextrose agar with osmotic stabilize), the regeneration efficiency of protoplasts was 51.45%. In another protocol, with 15 mg/mL snailase, 10 mg/mL lywallzyme, 0.6 M sucrose, in 0.06 M phosphate buffer (pH6.0), and digested for 1 h at 30 ºC, 1.57×108 protoplasts from each gram mycelia were obtained from cultures of C. globosum CH08 grown in PDB for 48 h. And when 0.7 M sucrose was used as osmotic stabilizer in the regeneration medium OPDA, the regeneration efficiency of protoplasts was 41.48%. Thirdly, the mutagenesis conditions and secondary screening model of C. cupreum CH21 were explored. An 80% to 85% death rate could be achieved when the protoplasts of C. cupreum CH21 were irradiated by 15 w UV lamp from 30 cm distance for 90 s. In addition, the doublelayer plate’s method for the primary screening of high-producing antibiotics strains was established. A high yielding antibiotic mutant CH21-I-402 was obtained through the primary screening on plate and the secondary selection in Erlenmeyer flask, compared to the original CH21 strain, the antifungal activity of the mutant CH21-I-402 was increased by 18.3%. Fourth, the sensitivity to antibiotics of both C. cupreum CH21-I-402 and C. globusm CH08 was detected. Results showed C. cupreum CH21-I-402 was sensitive to G418 (Geneticin) (Gs) and resistant to Hygromycin B(Hr), and C. globusm CH08 was sensitive to both G418 (Geneticin) (Gs) and Hygromycin B(Hs). At the same time, neomycin phosphotransferase II (npt II) gene was transformed into C. globusm CH08(Gs, Hs) mediated by Agrobacterium tumefaciens EHA105, and the npt II gene was verified by polymerase chain reaction in resistance to G418 strains CH08-GR70 and CH08-GR120. The transformants still showed sensitive to Hygromycin B(Hs). Finally, a selection system for hybrids was set up by interspecies protoplast fusion between C. cupreum and C. globusm using dominant selective drug resistance markers. At first, protoplasts of C. cupreum CH21-I-402 (Hr, Gs) and C. globusm CH08-GR70 (Hs, Gr) were prepared, then the protoplasts were fused in the presence of 35% polyethylene glycol 6000 and regenerated on OPDA medium with 65 μg/ml Hygromycin B and 60μg/ml G418, at last 46 colonies with Hr and Gr were obtained. Even after 5 generations’ subculture, most of the colonies displayed significant difference in taxonomic characteristics with their parental strains. Regenerated strains PF1 and PF26 were confirmed as fusants by amplified fragment length polymorphisms analysis with the genomic DNA as the model. PF26 showed higher inhibitory activity against Colletotrichum gloeosporioides and Macrophoma kuwatsukai than that of the parental strain C. globusm.
Resumo:
本论文以从四川峨嵋山森林土壤中分离筛选获得的一株产抗耐药性活性化合物的链霉菌S227为材料,对发酵液中活性物质的分离纯化及抗耐药性活性进行了研究。 建立了抗耐药性活性的定性、定量检测方法。建立的管蝶法活性定量检测的标准回归方程为:D=4.8229Ln(C)+3.6326 R=0.9972 ;纸片法活性定量检测的标准回归方程为:D=5.5Ln(C)-12.794 R=0.999。 根据建立的样品活性的检测方法,测定了发酵液的初始活性。实验证明活性物质的温度、pH稳定性好。 通过活性的定性、定量追踪方法,分别利用等体积的石油醚、乙酸乙酯、正丁醇在不同的pH梯度下萃取,确定了pH3条件下正丁醇能最大程度的萃取活性物质,说明活性物质极性很大。对正丁醇萃取相经过两次硅胶柱层析及薄层层析分离得到具有抗耐药菌活性的纯化样品S227-4。 经过核磁共振氢谱、碳谱数据分析初步确定S227-4为四聚糖,通过糖的水解实验初步确定S227-4由葡萄糖和半乳糖组成。 纸片法活性检测表明S227-4具有抗耐药菌活性。采用MIC测定法对该样品抗耐药活性进行研究。在证明该样品本身不具有抗菌活性的基础上,以临床分离的耐药性金黄色葡萄球菌为指示菌,考察了该样品与抗生素联合使用时对耐药菌抗生素MIC(最小抑菌浓度)值的影响,结果表明在不影响菌体生长的浓度条件下,该样品能明显降低多株耐药菌对多种抗生素的MIC值,不同程度地恢复所测试耐药菌对相应抗生素的敏感性。如S227-4与青霉素钠联用可以使S. aureus 12352的MIC降低8倍,而与红霉素联用可以使S. aureus 12334的MIC降低128倍。 The purification process and the activity of the anti bacterial drug resistance compounds produced by Streptomyces S227 isolated from the forest soil sample of the Mountain E’MEI in Sichuan Province were studied in this thesis. Quantitative and qualitative activity assay methods of the active compounds were established. The regression equation of the tube method was D=4.8229Ln(C)+3.6326, R=0.9972. The regression equation of the paper method was D=5.5Ln(C)-12.794, R=0.999. According to the established activity assay method, the incipient activity of the broth was evaluated. And it was proved that the stability of the active compounds was good. By quantitative and qualitative activity tracing method, petroleum ether, ethyl acetate and butanol were used to extract the active compounds at different pH. The result showed that butanol was the most effective agent for active component recovery at pH3. From the butanol extraction a purified sample, S227-4, was isolated by silica gel column chromatography and thin-layer chromatography . S227-4 was proved to be a tetra- saccharide by 1H-NMR and 13C-NMR. And its monosaccharides include glucose and galactose by hydrolysate analysis. The anti-drug resistant activity of S227-4 was tested in vitro by MICs assay using different drug resistant Staphylococcus aureus strains isolated clinically. The sample itself showed no anti-microbial activity in growth inhibitory experiment, but when it was used together with different antibiotics, it could remarkably decrease the MICs of different clinically isolated drug-resistant bacterial strains to these antibiotics. For example, when S227-4 was used with penicillin, the MIC of S. aureus 12352 decreased 8 times compared with that when penicillin was used alone. Meanwhile when it was used with erythromycin the MIC of S. aureus 12334 deceased 128 times compared with erythromycin alone.
Resumo:
The intestinal bacterial metabolites of ginsenosides are responsible for the main pharmacological activities of ginseng. The purpose of this study was to find whether these metabolites influence hepatic metabolic enzymes and to predict the potential for ginseng-prescription drug interactions. Utilizing the probe reaction of CYP3A activity, testosterone 6beta-hydroxylation, the effects of derivatives of 20(S)-protopanaxadiol and 20(S)-protopanaxatriol families on CYP3A activity in rat liver microsomes were assayed. Our results showed that ginsenosides from the 20(S)-protopanaxadiol and 20(S)-protopanaxatriol family including Rb-1, Rb-2, Rc, Compound-K, Re, and Rg(1), had no inhibitory effect, whereas Rg(2), 20(S)-panaxatriol and 20(S)-protopanaxatriol exhibited competitive inhibitory activity against CVP3A activity in these microsomes with the inhibition constants (K) of 86.4+/-0.8mum, 1.7+/-0.1mum, and 3.2+/-0.2 mum, respectively. This finding demonstrates that differences in their chemical structure might influence the effects of ginsenosides on CYP3A activity and that ginseng-derived products might have potential for significant ginseng-drug interactions.
Resumo:
粮食安全关系问题关系着一个国家的稳定与安全,粮食安全是人们一直关注的焦点问题。从全球来讲,世界可耕作土地越来越少,粮食安全是一个很严峻的问题。粮食安全是一个世界性问题,对我国来说,更是一个重大的问题。大力增产粮食,确保粮食安全,是实现世界和平与发展的一项不可忽视的长期而紧迫的任务。中国历朝历代政府都把粮食安全问题放在首位,视仓廪盈实为盛世景象。粮食是安天下的战略产业。改革开放以来,通过体制创新、结构创新和科技创新,粮食生产取得了举世瞩目的成就。论文分析了粮食安全的含义及问题,探讨了粮食安全衡量指标﹑内容及其含义,针对我国粮食安全的实际情况,提出了相应对策。
Resumo:
Lanthanide Eu3+ and Tb3+ ions have been widely used in luminescent resonance energy transfer (LRET) for bioassays to study metal binding microenvironments. We report here that Eu3+ or Tb3+ can increase the binding affinity of antitumor antibiotic drug agent, 7-amino actinomycin D (7AACTD), binding to 5'-GT/TG-5' or 5'-GA/AG-5' mismatched stem region of the single-stranded hairpin DNA. Further studies indicate that the effect of Eu3+ or Tb3+ on 7AACTD binding is related to DNA loop sequence. Our results will provide new insights into how metal ions can enhance antitumor agents binding to their targets.
Resumo:
In this article, an antibiotic, lincomycin was determined in the urine sample by microchip capillary electrophoresis (CE) with integrated indium tin oxide (ITO) working electrode based on electrochemiluminescence (ECL) detection. This microchip CE-ECL system can be used for the rapid analysis of lincomycin within 40 s. Under the optimized conditions, the linear range was obtained from 5 to 100 muM with correlation coefficient of 0.998. The limit of detection (LOD) of 3.1 muM was obtained for lincomycin in the standard solution. We also applied this method to analyzing lincomycin in the urine matrix. The limit of detection of 9.0 muM was obtained. This method can determine lincomycin in the urine sample without pretreatment, which demonstrated that it is a promising method of detection of lincomycin in clinical and pharmaceutical area.
Resumo:
The interaction of antitumor antibiotic, echinomycin (Echi) with guanine (Gua) was thoroughly investigated by adsorptive transfer stripping cyclic voltammetry, ultraviolet and visible adsorption spectra (UV/Vis) and Fourier-transform infrared spectroscopy (FTIR). Electrochemistry provided a simple tool for verifying the occurrence of interaction between Echi and Gua. Echi could be accumulated from the solution and give well-defined electrochemical signals in 0.1 M phosphate buffer solution (pH 7.0) only when Gua was present on the surface of the electrochemically pretreated glass carbon electrode (GCE), suggesting a strong binding of Echi to Gua. All the acquired spectral data showed that a new adduct between Echi and Gua was formed, and two pairs of adjacent intermolecular hydrogen bonds between the Ala backbone atoms in Echi and Gua (Ala-NH to Gua-N3 and Gua-NH2 to Ala-CO) played a dominating role in the interaction. Electrochemistry coupled with spectroscopy techniques could provide a relatively easy way to obtain useful insights into the molecular mechanism of drug-DNA interactions, which should be important in the development of new anticancer drugs with specific base recognition.
Resumo:
Poly(vinyl alcohol) /poly(N-vinyl pyrrolidone) (PVP)/chitosan hydrogels were prepared by a low-temperature treatment and subsequent Co-60 -gamma-ray irradiation and then were medicated with ciprofloxacin lactate (an antibiotic) and chitosan oligomer (molecular weight = 3000 g/mol). The gel content, swelling ratio, tensile strength, and crystallinity of the hydrogels were determined. The effects of the chitosan molecular weight, the low-temperature treatment procedure, and the radiation dosage on the hydrogel properties were examined. The molecular weight of chitosan was lowered by the irradiation, but its basic polysaccharide structure was not destroyed. Repeating the low-temperature treatment and gamma-ray irradiation caused effective physical crosslinking and chemical crosslinking, respectively, and contributed to the mechanical strength of the final hydrogels. The incorporation of PVP and chitosan resulted in a significant improvement in the equilibrium swelling ratio. and elongation ratio of the prepared hydrogels. The ciprofloxacin lactate and chitosan oligomer were soaked into the hydrogels. Their in vitro release behaviors were examined, and they were found to follow diffusion-controlled kinetics.
Resumo:
Nisin is a positively charged antibacterial peptide that binds to the negatively charged membranes of gram-positive bacteria. The initial interaction of the peptide with the model membrane of negatively charged DPPG (dipalmitoylphosphatidylglycerol) was studied by cyclic voltammetry and a.c. impedance spectroscopy. Nisin could induce pores the supported bilayer lipid membrane, thus, it led to the marker ions Fe(CN)(6)(3-/4-) crossing the lipid membrane and giving the redox reaction on the glassy carbon electrode (GCE). Experimental results suggested that the pore formation on supported bilayer lipid membrane was dependent on the concentration of nisin and it included three main concentration stages: low, middling, high concentration.
Resumo:
Aims: To assess the diversity of antibiotic-resistant bacteria and their resistance genes in typical maricultural environments. Methods nand Results: Multidrug-resistant bacteria and resistance genes from a mariculture farm of China were analysed via cultivation and polymerase chain reaction (PCR) methods. Oxytetracycline (OTC)-resistant bacteria were abundant in both abalone and turbot rearing waters, accounting for 3.7% and 9.9% of the culturable microbes. Multidrug resistance was common, with simultaneous resistance to OTC, chloramphenicol and ampicillin the most common resistance phenotype. 16S rDNA sequence analyses indicate that the typical resistant isolates belonged to marine Vibrio, Pseudoalteromonas or Alteromonas species, with resistance most common in Vibrio splendidus isolates. For OTC resistance, tet(A), tet(B) and tet(M) genes were detected in some multidrug-resistant isolates, with tet(D) being the most common molecular determinant. For chloramphenicol resistance, cat II was common, and floR was also detected, especially in marine Pseudoalteromonas strains. Conclusions: There is the risk of multidrug-resistant bacteria contamination in mariculture environments and marine Vibrio and Pseudoalteromonas species serve as reservoirs of specific antibiotic resistance determinants. Significance and Impact of the Study: This paper and similar findings from Korea and Japan indicate the potential for widespread distribution of antibiotic resistance genes in mariculture environments from the East Asian region of the world.
Resumo:
The chemical investigation of the crude extract of the marine-derived Streptomyces sp. M491 yielded three new sesquiterpenes, namely, 10 alpha,11-dihydroxyamorph-4-ene (4), 10 alpha,15-dihydroxyamorph-4-en-3-one (6), and 5 alpha,10 alpha,11-trihydroxyamorphan-3-one (7). In addition, the known compounds 10 alpha-hydroxyamorph-4-en-3-one (2), o-hydroxyacetanilide, genistein, prunetin, and indole-3-carbaldehyde and the macrolide antibiotic chalcomycin A were identified. The structures were determined on the basis of spectroscopic analysis, especially 1D and 2D NMR data. This is the first report of these sesquiterpenes from bacteria.