The inhibitory effect of intestinal bacterial metabolite of ginsenosides on CYP3A activity


Autoria(s): Liu, Y; Li, W; Li, P; Deng, MC; Yang, SL; Yang, L
Data(s)

01/10/2004

Resumo

The intestinal bacterial metabolites of ginsenosides are responsible for the main pharmacological activities of ginseng. The purpose of this study was to find whether these metabolites influence hepatic metabolic enzymes and to predict the potential for ginseng-prescription drug interactions. Utilizing the probe reaction of CYP3A activity, testosterone 6beta-hydroxylation, the effects of derivatives of 20(S)-protopanaxadiol and 20(S)-protopanaxatriol families on CYP3A activity in rat liver microsomes were assayed. Our results showed that ginsenosides from the 20(S)-protopanaxadiol and 20(S)-protopanaxatriol family including Rb-1, Rb-2, Rc, Compound-K, Re, and Rg(1), had no inhibitory effect, whereas Rg(2), 20(S)-panaxatriol and 20(S)-protopanaxatriol exhibited competitive inhibitory activity against CVP3A activity in these microsomes with the inhibition constants (K) of 86.4+/-0.8mum, 1.7+/-0.1mum, and 3.2+/-0.2 mum, respectively. This finding demonstrates that differences in their chemical structure might influence the effects of ginsenosides on CYP3A activity and that ginseng-derived products might have potential for significant ginseng-drug interactions.

Identificador

http://159.226.238.44/handle/321008/80971

http://www.irgrid.ac.cn/handle/1471x/135790

Idioma(s)

英语

Fonte

刘勇; 李巍; 李鹏; 邓麦村; 杨胜利; 杨凌.The Inhibitory Effect of Intestinal Bacterial Metabolite of Ginsenosides on CYP3A Activity,Biological & Pharmaceutical Bulletin,2004,27(10):1555-1560

Palavras-Chave #ginseng-drug interaction #intestinal bacterial metabolite #ginsenoside #CYP3A
Tipo

期刊论文