989 resultados para Anti-reflection coating (ARC)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A scheme based on a W-shaped axicon mirror device for total-internal-reflection fluorescence microscopy (TIRFM) is presented. This approach combines the advantages of higher efficiency compared with traditional TIRFM, adjustable illumination area, and simple switching between wide-field and TIRF imaging modes. TIRF images obtained with this approach are free of shadow artifacts and of interference fringes. Example micrographs of fluorescently labeled polystyrene beads, of Convallaria majalis tissue, and of Propidium-iodide-labeled Chinese hamster ovary cells are shown, and the capabilities of the scheme are discussed. (C) 2010 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the possible failure modes of the thermal barrier coating (TBC) used to protect the scramjet combustion chamber, the local heating via laser beam irradiation was utilized to simulate the service condition of high thermal flux and high temperature gradient. Firstly, the experimental method and process were described and the typical fracture morphology of the TBC under test were provided. Then, the theoretical and finite element modeling were carried out to study the temperature, deformation and stresses of the specimen when the top ceramic coat was subjected to local heating, and to demonstrate the mechanism on the failure of the TBC. It is revealed that the interface delamination shall appear and ultimately lead to the failure of the TBC under such thermal loading of local quick heating. According to the outcome of this study, the driving force of the interface delamination is influenced greatly by the key structural parameters and performance matching. Moreover, by utilizing the rules of the effects of these parameters on the fracture driving force, there is some possibility for the designer to optimize the performances of the TBC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modeling study is conducted to investigate the effect of hydrogen content in propellants on the plasma flow, heat transfer and energy conversion characteristics of low-power (kW class) arc-heated hydrogen/nitrogen thrusters (arcjets). 1:0 (pure hydrogen), 3:1 (to simulate decomposed ammonia), 2:1 (to simulate decomposed hydrazine) and 0:1 (pure nitrogen) hydrogen/nitrogen mixtures are chosen as the propellants. Both the gas flow region inside the thruster nozzle and the anode-nozzle wall are included in the computational domain in order to better treat the conjugate heat transfer between the gas flow region and the solid wall region. The axial variations of the enthalpy flux, kinetic energy flux, directed kinetic-energy flux, and momentum flux, all normalized to the mass flow rate of the propellant, are used to investigate the energy conversion process inside the thruster nozzle. The modeling results show that the values of the arc voltage, the gas axial-velocity at the thruster exit, and the specific impulse of the arcjet thruster all increase with increasing hydrogen content in the propellant, but the gas temperature at the nitrogen thruster exit is significantly higher than that for other three propellants. The flow, heat transfer, and energy conversion processes taking place in the thruster nozzle have some common features for all the four propellants. The propellant is heated mainly in the near-cathode and constrictor region, accompanied with a rapid increase of the enthalpy flux, and after achieving its maximum value, the enthalpy flux decreases appreciably due to the conversion of gas internal energy into its kinetic energy in the divergent segment of the thruster nozzle. The kinetic energy flux, directed kinetic energy flux and momentum flux also increase at first due to the arc heating and the thermodynamic expansion, assume their maximum inside the nozzle and then decrease gradually as the propellant flows toward the thruster exit. It is found that a large energy loss (31-52%) occurs in the thruster nozzle due to the heat transfer to the nozzle wall and too long nozzle is not necessary. Modeling results for the NASA 1-kW class arcjet thruster with hydrogen or decomposed hydrazine as the propellant are found to compare favorably with available experimental data.