989 resultados para AlGaInP laser diodes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a recent experimental work on the excess photon detachment (EPD) of H- ions [Phys. Rev. Lett. 87 (2001) 243001] it has been found that the ponderomotive shift of each EPD peak increases with the order of the EPD channel. By using a nonperturbative quantum scattering theory, we obtain the kinetic energy spectra for the differential detachment rate along the laser polarization for several laser intensities. It is demonstrated that higher order EPD peaks are produced mainly at relatively higher laser intensities. By calculating the overall EPD spectra with varying laser intensities, it is found that the ponderomotive shift of each EPD peak increases with the order of the EPD channel. Our calculations are in good agreement with the experimental observation. It is found that different EPD channels occur mainly when the laser field reaches some values, thus the intensity distribution of the laser field is responsible for the varying ponderomotive shifts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the propagation of an arbitrary elliptically polarized few-cycle ultrashort laser pulse in resonant two-level quantum systems using an iterative predictor-corrector finite-difference time-domain method. It is shown that when the initial effective area is equal to 2 pi, the effective area will remain invariant during the course of propagation, and a complete Rabi oscillation can be achieved. However, for an elliptically polarized few-cycle ultrashort laser pulse, polarization conversion can occur. Eventually, the laser pulse will evolve into two separate circularly polarized laser pulses with opposite helicities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characteristics of backward harmonic radiation due to electron oscillations driven by a linearly polarized fs laser pulse are analysed considering a single electron model. The spectral distributions of the electron's backward harmonic radiation are investigated in detail for different parameters of the driver laser pulse. Higher order harmonic radiations are possible for a sufficiently intense driving laser pulse. We have shown that for a realistic pulsed photon beam, the spectrum of the radiation is red shifted as well as broadened because of changes in the longitudinal velocity of the electrons during the laser pulse. These effects are more pronounced at higher laser intensities giving rise to higher order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that by increasing the laser pulse width the broadening of the high harmonic radiations can be controlled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linear Thomson scattering of a short pulse laser by relativistic electron lids been investigated using computer simulations. It is shown that scattering of an intense laser pulse of similar to 33 fs full width at half maximum, with an electron of gamma(o) = 10 initial energy, generates an ultrashort, pulsed radiation of 76 attoseconds, with a photon wavelength of 2.5 nm in the backward direction. The scattered radiation generated by a highly relativistic electron has superior quality in terms of its pulse width and angular distribution in comparison to the one generated by lower relativistic energy electron.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of shaped laser pulses with plasmas is studied in a strict theoretical framework without adopting the slow-varying envelope approximation (SVEA). Any physical quantities involved in the interaction are denoted as a summation of different real quantities of respective phases. The relationships among the phases of those real quantities and their moduli are strictly analyzed. Such strict analyses lead to a more exact equation set for the three-dimensional envelope of the laser pulse, which is not based on SVEA. Based on this equation set, self-focusing, Raman, and modulation instabilities could be discussed in a unified framework. The solutions of this equation set for the laser envelope reveal many possible multicolor laser modes in plasmas. The energy and the shape of a pulse determine its propagation through plasmas in a multicolor mode or in a monochromic mode. A global growth rate is introduced to measure the speed of the transition from the monochromic mode in vacuum to a possible mode in plasmas. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical fluid model for resonance absorption during the oblique incidence by femtosecond laser pulses on a small-scale-length density plasma [k(0)L is an element of(0.1,10)] is proposed. The physics of resonance absorption is analyzed more clearly as we separate the electric field into an electromagnetic part and an electrostatic part. It is found that the characteristics of the physical quantities (fractional absorption, optimum angle, etc.) in a small-scale-length plasma are quite different from the predictions of classical theory. Absorption processes are generally dependent on the density scale length. For shorter scale length or higher laser intensity, vacuum heating tends to be dominant. It is shown that the electrons being pulled out and then returned to the plasma at the interface layer by the wave field can lead to a phenomenon like wave breaking. This can lead to heating of the plasma at the expanse of the wave energy. It is found that the optimum angle is independent of the laser intensity while the absorption rate increases with the laser intensity, and the absorption rate can reach as high as 25%. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical fluid model for JxB heating during the normal incidence by a short ultraintense linearly polarized laser on a solid-density plasma is proposed. The steepening of an originally smooth electron density profile as the electrons are pushed inward by the laser is included self-consistently. It is shown that the JxB heating includes two distinct coupling processes depending on the initial laser and plasma conditions: for a moderate intensity (a <= 1), the ponderomotive force of the laser light can drive a large plasma wave at the point n(e)=4 gamma(0)n(c) resonantly. When this plasma wave is damped, the energy is transferred to the plasma. At higher intensity, the electron density is steepened to a high level by the time-independent ponderomotive force, n(e)> 4 gamma(0)n(c), so that no 2 omega resonance will occur, but the longitudinal component of the oscillating ponderomotive field can lead to an absorption mechanism similar to "vacuum heating." (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characteristics of harmonic radiation due to electron oscillation driven by an intense femtosecond laser pulse are analyzed considering a single electron model. An interesting modulated structure of the spectrum is observed and analyzed for different polarization. Higher order harmonic radiations are possible for a sufficiently intense driving laser pulse. We have shown that for a realistic pulsed photon beam, the spectrum of the radiation is red shifted as well as broadened because of changes in the longitudinal velocity of the electrons during the laser pulse. These effects are more pronounced at higher laser intensities giving rise to higher order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that by increasing the laser pulse width broadening of the high harmonic radiations can be limited. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of intense femtosecond laser pulses with hydrogen clusters has been experimentally studied. The hydrogen clusters were produced from expansion of high-pressure hydrogen gas (backed up to 8x10(6)Pa) into vacuum through a conical nozzle cryogenically cooled by liquid nitrogen. The average size of hydrogen clusters was estimated by Rayleigh scattering measurement and the maximum proton energy of up to 4.2keV has been obtained from the Coulomb explosion of hydrogen clusters under 2 x 10(16)W/cm(2) laser irradiation. Dependence of the maximum proton energy on cluster size and laser intensity was investigated, indicating the correlation between the laser intensity and the cluster size. The maximum proton energy is found to be directly proportional to the laser intensity, which is consistent with the theoretical prediction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pump and probe system is developed, where the probe pulse duration tau is less than 60 fs while the pump pulse is stretched up to 150-670 fs. The time-resolved excitation processes and damage mechanisms in the omnidirectional reflectors SiO2/TiO2 and ZnS/MgF2 are studied. It is found that as the pump pulse energy is higher than the threshold value, the reflectivity of the probe pulse decreases rapidly during the former half, rather than around the peak of the pump pulse. A coupled dynamic model based on the avalanche ionization (AI) theory is used to study the excitation processes in the sample and its inverse influences on the pump pulse. The results indicate that as pulse duration is longer than 150 fs, photoionization (PI) and AI both play important roles in the generation of conduction band electrons (CBEs); the CBE density generated via AI is higher than that via PI by a factor of 10(2)-10(4). The theory explains well the experimental results about the ultrafast excitation processes and the threshold fluences. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the evolution of filamentation in air by using a longitudinal diffraction method and a plasma fluorescence imaging technique. The diameter of a single filament in which the intensity is clamped increases as the energy of the pump light pulse increases, until multiple filaments appear. (c) 2006 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective diode-pumped cw tunable laser action of a new alloyed crystal Yb:Gd(2(1-)x) Y2xSiO5 (Yb:GYSO, x = 0.5) is demonstrated for the first time. The alloyed crystal retains excellent laser properties of Gd2SiO5 (GSO), as well as the favorable growth properties and the desirable physical of Y2SiO5 (YSO). With a 5-at.% Yb: GYSO sample, we achieved 2.44 W output power at 1081.5 nm and a slope efficiency of 57%. And its laser wavelength could be tuned from 1030nm to 1089 nm. (c) 2006 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The damage in fused silica and CaF2 crystals induced by wavelength tunable femtosecond lasers is studied. The threshold fluence is observed to increase rapidly with laser wavelength lambda in the region of 250-800 nm, while it is nearly a constant for 800 lasers. Our theory explains well the experiments.