964 resultados para Al2O3
Resumo:
采用高温固相反应法,合成了一系列不同组份的磷光体,测定了它们的振动光谱.结果表明,随着Al/B比的减小,在1100~1000cm-1的区域内的振动光谱没有明显变化,铕离子不可能进入Al18B4O33的晶格中;振动光谱的背底升高,非晶相逐渐增加.研究了Al2O3-B2O3-Eu2O3中Eu3+离子的光谱特性,发现随着Al/B比的减少,Eu3+离子的存在相由晶相逐渐向非晶相转化。在非晶相中,Eu3+离子的声子伴带表明电子与声子的耦合强度随着Al/B比的减少而减小,Eu3+离子的发射强度相应的增加,这与多声子弛豫的理论一致.
Resumo:
运用周期表对角线规则,获得了Eu2+激活的Li-β-Al2O3新的发光基质,研究了该基质的组成、结构、电荷补偿机制及Eu2+在体系中的发光性能结果表明:锂对BaMgAl10O17基质中镁的取代仍然保持β-Al2O3结构不变,Li-β-Al2O3基质中的电荷补偿主要是形成间隙Al3+或Li+离子机制,Eu2+激活的Li-β-Al2O3具有良好的发光性能,通过进一步研究有可能应用到三基色发光材料中去
Resumo:
根据固体与分子经验电子理论(EET)分析计算Ti-Al系金属间化合物及氢和氧影响下各相的价电子结构与解理能Gc,据此分析Ti-Al系金属间化合物的环境脆性(EE).结果表明,Ti3Al的氢脆是由于高氢含量下易生成性相引起的;TiAl的氢脆是由于固溶氢减弱含氢TiAl晶胞主干键并降低解理能引起的.而Ti3Al固溶氧使其键结构呈更严重的各向异性,导致Ti3Al脆性加剧;在氧含量较高时,氧化物TiO2形成将导致更加恶劣的脆性,而形成最强键nA和热稳定性较高的Al2O3将会有好的抗氧化性.同时也解释一些尚有争议的实验结果,并提出一些解决环境脆性的韧化途径.
Resumo:
甲烷部分氧化制合成气因其高空速、高转化率、低H2/CO比而引起人们的重视[1~5].本文研究了在Ni/α-Al2O3催化剂中添加的Rh、Ru、Pt和Pd等贵金属在甲烷部分氧化制合成气反应中的催化作用,重点研究了添加Pt对Ni/α-Al2O3催化剂反应…
Resumo:
研究了Pt/Al2O3和Pt/CeO2/Al2O3对甲烷部分氧化制合成气反应的催化活性,发现Pt/CeO2/Al2O3显示了更高的甲烷转化率和合成气选择性.用H2-TPR、H2-TPD、SEM-EDX和XRD等技术对催化剂进行了表征.CeO2和Pt相互作用促进Pt在催化剂表面的分散,抑制Pt在催化剂表面的迁移;降低了催化剂的燃烧活性,提高了催化剂的部分氧化活性和选择性,可避免因催化剂床层局部温度过高而导致催化剂活性下降或失活,提高了催化剂的稳定性.同时,CeO2通过促进水汽变换反应使反应体系迅速达到平衡,提高了催化剂对H2的选择性.
Resumo:
研究了稀土金属氧化物(La2O3,CeO2,Pr6O11和Nd2O3)对Ni/α-Al2O3催化剂上甲烷部分氧化制合成气反应的影响.X光粉末衍射和活性考察结果表明,稀土氧化物使Ni/α-Al2O3催化剂的稳定性有显著提高.稀土氧化物与活性组份Ni之间的相互作用抑制了催化剂表面Ni晶粒的生长和迁移,由于这种作用也抑制了催化剂表面积炭的生成.在实验中还发现CeO2容易进行Ce3+Ce4+氧化还原反应而对反应具有催化活性.
Resumo:
Heteropolyacids (HPAs) possess both acidic and redox catalytic properties and held extensive promise of practical application. These type of compound display a great potential of specific synthesis reactions for replacing sulfuric acid to satisfy the requirements of environmental protection. Heterogenizing HPAs would not only make them more useful in liquid phase oxidation with oxygen and in acid-catalyzed reaction, as the catalyst is often difficult to separate from the reaction products, but also create favorable factors for realizing heterogenization of homogeneous reaction and even utilizing new technology of catalytic distillation. In this paper, different kinds of porous materials which are well characterized, including oxides such as Al2O3, SiO2, TiO2, diatomite, bentonite, and active carbon of different sources, were used as support for heterogenizing HPAs (in different media), and the obtained results, the intrinsic characters of supports which may influence both the nature of the interaction between HPAs and supports in the heterogenization and the activity in the catalytic reaction, are explored. It is expected that these can provide a referential model for preparing supported acid catalyst used in liquid phase.
Resumo:
A series of potassium-promoted CoMo/Al2O3 has been investigated by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and temperature-programmed reduction (TPR). CoMoO4 was found in the CoMo/Al2O3 catalyst by XRD and is destroyed by the presence of potassium. The reducibility of molybdenum is enhanced by potassium in the CoMoK/Al2O3 catalyst and is easier to reduce to Mo(IV) during sulfidation. In the oxidic state catalyst cobalt is increased on the surface by the addition of potassium. After sulfidation this phenomena disappeared, the distribution of cobalt remains at a constant level and is unaffected by the potassium content. The addition of potassium leads to a monotonical decrease of the molybdenum dispersion with the impregnating amount of potassium in the oxidic state catalyst but is more complicated after sulfidation. Potassium is well dispersed on the surface in both the oxidic and sulfided state. The activity in the water-gas shift reaction was correlated with the potassium content of CoMoK/Al2O3.
Resumo:
Mid-ocean ridge basalts (MORBs) from East Pacific Rise (EPR) 13 degrees N are analysed for major and trace elements, both of which show a continuous evolving trend. Positive MgO-Al2O3 and negative MgO-Sc relationships manifest the cotectic crystallization of plagioclase and olivine, which exist with the presence of plagioclase and olivine phenocrysts and the absence of clinopyroxene phenocrysts. However, the fractionation of clinopyroxene is proven by the positive correlation of MgO and CaO. Thus, MORB samples are believed to show a "clinopyroxene paradox". The highest magnesium-bearing MORB sample E13-3B (MgO = 9.52%) is modelled for isobaric crystallization with COMAGMAT at different pressures. Observed CaO/Al2O3 ratios can be derived from E13-3B only by fractional crystallization at pressure > 4 +/- 1 kbar, which necessitates clinopyroxene crystallization and is not consistent with cotectic crystallization of olivine plus plagioclase in the magma chamber (at pressure similar to 1 kbar). The initial compositions of the melt inclusions, which could represent potential parental magmas, are reconstructed by correcting for post-entrapment crystallization (PEC). The simulated crystallization of initial melt inclusions also produce observed CaO/Al2O3 ratios only at > 4 +/- 1 kbar, in which clinopyroxene takes part in crystallization. It is suggested that MORB magmas have experienced clinopyroxene fractionation in the lower crust, in and below the Moho transition zone. The MORB magmas have experienced transition from clinopyroxene+plagioclase+olivine crystallization at > 4 +/- 1 kbar to mainly olivine+plagioclase crystallization at < 1 kbar, which contributes to the explanation of the "clinopyroxene paradox".
Resumo:
Modal composition and mineral composition of harzburgites from the southern Mariana fore-arc show that they are highly refractory. There are a few modals of clinopyroxene (0.7 vol %) in harzburgites. Two types of amphibole are found in these harzburgites: magnesiohornblende accompanied by clinopyroxene with higher Al2O3 content (> 7%) and lower Mg-#; tremolite around orthopyroxene with lower Al2O3 content (< 2%) and higher Mg-#. Trace element of clinopyroxene and two types of amphibole are analyzed. Primitive mantle-normalised REE patterns for clinopyroxene and magnesio hornblende are very similar and both show HREE enrichment relative to LREE, while magnesiohornblende has higher content of trace element than clinopyroxene. The contents of trace element of tremolite are much lower than those of magnesiohornblende. Clinopyroxene shows enrichment of most of the trace element except HREE and Ti relative to clinopyroxene in abyssal peridotites. Petrology and trace element characteristic of clinopyroxene and two types of amphibole indicate that southern Mariana fore-arc harzburgites underwent two stages of metasomatism. The percolation of a hydrous melt led to mobility of Al, Ca, Fe, Mg, Na, and large amounts of trace element. LILE and LREE can be more active in hydrous melt than HREE and Ti, and the activities of most of the trace element except some of LILE are influenced by temperature and pressure.
Resumo:
作为大陆向大洋的过渡带,由于享有得天独厚的沉积环境,具有独特的构造特征以及与黑潮主流之间的密切关系,一直以来,冲绳海槽都是中外学者研究的重点靶区。2005年5月,由我国与法国联合主持的IMAGES 航次在台湾东北海域获取MD05-2908柱状岩芯(24º48.04′N,122 º29.35′E,水深为1275米),该柱状岩芯为一34.17米长高质量的连续沉积记录,岩性以深灰色粘土质粉砂为主,含水量较高,粘性、可塑性强,含有数层厚度不等的夹层。岩芯年龄模式依据17个AMS 14C定年数据建立,岩芯底部年代约6.8ka,为中全新世以来的沉积。在实验室对样品按照2cm的间隔进行分割后分别进行了粒度分析、粘土矿物提取与测试、碎屑矿物提取与鉴定、常微量元素和稀土元素分析等实验。 粒度分析结果显示,MD05-2908岩芯沉积物粒度垂向上总体比较均一,以细颗粒的粘土与粉砂质为主,但不同层位也稍有差别,表现为底部层位粒度较粗,含砂量较高,说明底部沉积环境比较复杂。粘土粒级(<2µm)矿物主要由四种粘土矿物和少量石英、长石碎屑组成。其中,粘土矿物相对含量变化中,伊利石(~68%)与绿泥石(~17%)构成主要成分,含有蒙皂石(~10%)和高岭石(~5%)。结合台湾东北外海表层沉积物的研究,利用粘土矿物伊利石/蒙皂石和绿泥石/高岭石比值得出岩芯粘土矿物主要为陆源碎屑粘土矿物,其源岩主要为台湾中央山脉的变质岩与台湾东部的沉积岩。重矿物分析共选取了41个层位,对63~250μm粒级的样品在实体镜和偏光显微镜下进行鉴定,结果显示,岩芯重矿物主要由绿泥石(29%)、普通角闪石(22%)、白云石(10%)、黑云母(8%)、绿帘石(7%)、白云母(7%)、褐铁矿(5%)等组成。稳定矿物少,矿物成熟度低。碎屑矿物风化程度低,磨蚀不明显,分选较差,表明沉积物来自于近源,后期改造作用不明显。常量元素分析结果表明,SiO2 、Al2O3和Fe2O3是岩芯沉积物中的最主要组分,这三种组分占沉积物总量的82%左右。 整个岩芯自下而上各常量组分变化不大,其平均值与东海陆架沉积物基本接近。微量元素变化比较明显, Ba、Cr、Cu、Zn元素的含量比东海陆架沉积物中的含量要高,而Sr的含量明显低于东海陆架。对常微量元素的R型因子分析表明,常量元素SiO2、Al2O3、Fe2O3、MgO和K2O,微量元素Cr、Cu、Ni、Zn、Pb、Rb和Mn可代表陆源物质;常量元素CaO和微量元素Sr、Ba可代表生物源物质。岩芯沉积物以陆源物质为主,生源物质的贡献起次要作用。岩芯沉积物中稀土元素总量平均为169.87×10-6,并且轻稀土含量均高于重稀土,LREE/HREE平均值为10.14,表明了轻稀土对稀土总量的贡献远高于重稀土,沉积物富集轻稀土,反映了沉积物的陆源特征。 岩芯MD05-2908中全新世以来平均5m/ka的高沉积速率主要源于丰富的物质供应和适宜的沉积环境。岩芯细粒级沉积物中,地球化学特征表明沉积物主要来源于陆源碎屑物质,粘土矿物特征与台湾东部陆源物质相同;粗粒级沉积物中,重矿物含量及矿物特征也表明岩芯沉积物粗颗粒组分主要来自于近源沉积。台湾宜兰境内的兰阳溪每年携带约一千万吨冲积物入海成为研究区重要的物质来源。由于受到黑潮的强烈影响,逆时针涡流及底层反向流的存在是岩芯高沉积速率重要控制因素。因此,利用动力分选的粉砂组分可以用来示踪古洋流强度,结果显示,6.8ka以来黑潮的强弱波动频繁,并表现出一定的旋回性变化,频谱分析表明,其具有的千年尺度周期(1500a)、百年尺度周期(604a、242a、192a、153a、133a)与十年尺度周期(22a)的周期性变化均与太阳辐射量变化有密切关系,因此,黑潮的强弱变化在大背景上是由太阳活动所控制的。 根据测年资料可以识别出岩芯存在5期快速堆积事件,这与区域性降水增加有关,降雨量增加导致陆源物质输入的增加。另外,岩芯位于大陆斜坡区,附近存在有三支海底峡谷,并且地震活动频繁,沉积在宜兰陆架及东海陆架处的浅海沉积物由于受到地震、风暴等活动的影响而受扰动崩塌、因重力作用而向低处输送,产生二次侵蚀并经由海底峡谷搬运到冲绳海槽南段堆积,使得沉积环境更为复杂,但同时也为冲绳海槽提供了丰富的物质供应。
Resumo:
本论文依托我国近海海洋综合调查与评价专项(908专项)的“CJ12区块海底底质调查与研究”课题,利用专项课题调查所获的927个表层沉积物、4条悬浮体断面和7根重力柱样进行了沉积学、矿物学、元素地球化学和同位素地球化学的分析测试以及水文与悬浮体的现场观测,编制了研究区沉积物类型图,探讨了全新世以来沉积环境的演化。 沉积物粒度、常微量元素、粘土矿物资料表明东海内陆架泥质区现代沉积作用稳定,沉积物总体呈NE-SW方向运移,它们主要受控于长江来源物质与闽浙沿岸流、台湾暖流等水动力条件。沉积物空间分布上可划分为长江物质控制区和闽江物质控制区两部分。因子分析表明,研究区沉积物主要为陆源细颗粒碎屑沉积,还有少量陆源粗颗粒碎屑和海洋自生的混合沉积、火山碎屑和海洋化学混合沉积。 东海内陆架泥质区夏季悬浮体质量浓度平面分布,近岸浓度明显高于远岸,最高值出现在闽江、瓯江等河口区附近。垂向上浓度随水深的增加而增大,海底地势凸起位置出现高浓度区。控制东海内陆架泥质区悬浮体质量浓度分布规律的主要因素为物源供给和海流状况。现场体积浓度平面分布表现出自北向南逐渐降低的趋势,而垂向分布总的规律表现为表层水体浓度较低,且分布均匀,而在水深10m和30m左右浓度出现高值,30m以下水体随着深度增大,呈小幅度增大趋势。现场平均粒径垂向分布的最大值出现在不同的层位,但总体表现出由北向南逐渐降低的趋势,且多数站位粒度频率曲线尾部出现了“上升尾”。 基于对7个沉积物柱样的分析,探讨了研究区全新世以来沉积作用与沉积环境的演化。年代学结果表明全新世以来泥质区沉积速率介于26.41-50.41cm/ka之间,在此基础上以粒度敏感粒级、粘土矿物组合恢复了闽浙沿岸流强度,以敏感性微量元素指标恢复了氧化还原环境,以有机碳、生物硅、微量元素组合指标推断了古生产力演化。结果表明,研究区8400-4000aB.P.表现为氧化还原环境偏向于富氧,沿岸流较强,古生产力和上升流强度较弱;4000-1300aB.P.期间沿岸流、氧化还原环境、古生产力和上升流强度均表现为高度波动期;1300aB.P.至今,表现为氧化还原环境偏向于贫氧,沿岸流逐渐变弱,古生产力和上升流则有逐渐增强的趋势。根据CJ12-1011孔沉积物<9.71µml粒级平均粒径、TiO2/Al2O3比值、(蒙皂石+伊利石)/高岭石比值推断东亚冬季风演化过程,可以识别出全新世12次降温事件,与格陵兰冰心和敦德冰心氧同位素测试结果对应性较好,且在其它区域不同的材料中也能找到相应的降温证据,揭示全球气候变化的区域性相应。
Resumo:
The occurrence of Late Cretaceous mafic dykes and their entrained peridotite and granulite xenoliths as well as clinopyroxene xenocrysts in the Qingdao region provide us a precious opportunity to unveil the nature and characteristics of the Late Mesozoic lithospheric mantle and lower crust beneath the Jiaodong region, and the change of the magma sources. These studies are of important and significant for understanding the lithospheric evolution in the eastern North China Craton. There were two periods of magma activities in Late Mesozoic in Qingdao Laoshan region, one was around 107Ma in the Early Cretaceous and the other around 86Ma in the Late Cretaceous according to the whole rock K-Ar age determination. The Early Cretaceous mafic dykes and the Late Cretaceous mafic dyke (i.e. Pishikou mafic dike) have completely different geochemical characteristics. The Early Cretaceous mafic dykes are enriched in LILE, strongly depleted in HFSE (Nb, Ta, Zr, Hf) and characterized by the highly radiogenic Sr and Nd isotopic compositions. These geochemical features indicate that the Early Cretaceous mafic dykes were derived from an enriched lithospheric mantle. In contrast, the Late Cretaceous mafic dyke is enriched in LILE, without HFSE depletion (Nb, Ta, Zr, Hf) and has less radiogenic Nd and Sr isotopic compositions. These geochemical features indicate that the Late Cretaceous mafic dyke was derived from the asthenosphere modified by subducted pelagic sediment contamination. The intrusive age of the Late Cretaceous mafic dyke provides further information for the termination of the lithosphere thinning for the eastern North China Crtaon. Pishikou Late Cretaceous mafic dyke contains abundant peridotitic xenoliths, granulite xenoliths and clinopyroxene xenocrysts. The peridotitic xenoliths can be divided into two types: high Mg# peridotites and low Mg# peridotites, according to their textural and mineral features. The high-Mg# peridotites have high Fo (up to 92.2) olivines and high Cr# (up to 55) spinels. The clinopyroxenes in the high# peridotites are rich in Cr2O3 and poor in Al2O3. The low-Mg# peridotites are typified by low Mg# (Fo <90) in olivines and low Cr# (Cr# <0.14) in spinels. The clinopyroxenes in the low-Mg# peridotites are rich in Al2O3 and Na2O and poor in Cr2O3. These two type peridotites have similar equilibrated temperatures of 950C-1100C. The Clinopyroxenes in the high-Mg# peridotites generally have high and variable REE contents (REE = 5.6-84 ppm) and LREE-enriched chondrite-normalized patterns ((La/Yb)N>1). In contrast, the clinopyroxenes in the low-Mg# peridotites have low REE contents (REE = 12 ppm) and LREE-depleted patterns ((La/Yb)N<1). The textural, mineral and elemental features of the low-Mg# peridotites are similar to those of the low-Mg peridotites from the Junan, representing the newly-accreted lithospheric mantle. However, the mineralogical and petrological features of the high-Mg# peridotites are similar to those of the high-Mg# peridotites from the Junan region, representing samples from the old refractory lithospheric mantle that was strongly and multiply affected by melts of different origins Late Cretaceous mafic dike in the Qingdao region also contains two types of granulite xenoliths according to the mineral constituents: the pyroxene-rich granulites and the plagioclase-rich granulites. Equilibrated temperatures calculated from the cpx-opx geothermometers are in a range of 861C - 910C for the pyroxene-rich granulites and of 847C - 890C for the plagioclase-rich granulites. The equilibrated pressure for the plagioclase-rich granulites is in a range of 9.9-11.7 kbar. Combined with the results of the peridotitic xenoliths, a 40C temperature gap exists between the peridotite and the granulite. The petrological Moho was 33~36 km at depths, broadly consistent with the seismic Moho estimated from the geophysical data. This indicates that there was no obvious crust-mantle transition zone in the Qingdao region in the Late Mesozoic. Pishikou Late Cretaceous mafic dyke entrained lots of clinopyroxene xenocrysts which are characterized by the chemical zoning. According to the zoning features, two types of clinopyroxene xenoliths can be classified, the normal zoning and the revise zoning. The normally-zoned clinopyroxene xenocrysts have LREE-depleted REE patterns in the cores. In contrast, the revisely-zoned clinopyroxenes have LREE-enriched REE patterns in the cores. According to the rim and core compositions of xenocrysts, all the rims are balanced with the host magma. Meanwhile, the origins of the cores were complicated, in which the normally-zoned clinopyroxenes were derived form the lithospheric mantle and some of the reversely-zoned clinopyroxnes were originated from the lower crust. Other revisely-zoned clinopyroxenes had experienced complex geological evolution and need to be further investigated. According to the above results, a simplified lithospheric profile has been established beneath the Qingdao region and a constraint on the nature and characteristics of the lithospheric mantle and lower crust has been made.
Resumo:
This thesis mainly concentrates on the geochronology, prtrology, elemental geochemistry and Sr-Nd-Pb-Hf isotopic geochemistry of the volcanic rocks in north Da’Hinggan Mountain. By analyzing the data obtained in this study and data from other people, this thesis explored the age distribution, petrology and mineralogy and geochemistry characteristics of the volcanic rocks in north Da’Hinggan Mountain. Furthermore, this thesis speculated upon the source characteristics of these volcanic rocks and their implications for the tectonic evolution and crust accretion. According to the twenty Ar-Ar ages, four zircon U-Pb SHRIMP ages and two Zircon U-Pb LA-ICP-MS ages, the duration of the eruption of the Late Mesozoic volcanic rocks in north Da’Hing Mountain was about 160Ma-106Ma. Most of these volcanic rocks belong to early Cretaceous and the late Jurassic volcanic rocks are only restricted in Manzhouli. The bulk of the late Mesozoic volcanic rocks are high-K calc-alkaline rocks. Only a small portion of these volcanic rocks are shoshonites. These rocks are mainly intermediate or acid and the basic rocks usually have higher alkaline contents. Rock types are very complex in this region. These volcanic rocks have a large TiO2 variation and the Al2O3 and alkaline contents are high. From the point of mineralogy, the plagioclases in these volcanic rocks are oligoclases, andesines and labradorites, and the labradorites are more common. Most pyroxenes in these volcanic rocks are augites which belong to clinopyroxene. The source of the Late Mesozoic volcanic rocks was an enriched lithospheric mantle. When the magma en route to the surface it was contaminated by crust material slightly and had some fractional crystallization. These rocks which mainly belong to high-K calc-alkaline series were one of the results of postorogenic tectonic-magmatic activities. The upwelling in late Mesozoic supplied heat to melt the enriched lithospheric mantle which was resulted from the subduction of paleo-Asian Ocean and/or Mengol-Okhotsk ocean. These late Mesozoic volcanic rocks are also important to the upper crustal accretion of north Da’Hinggan Mountain since the late Mesozoic. These volcanics and the contemporary emplacement of granites and the basaltic underplating in combination fulfilled the crust accretion history in north Da’Hinggan Mountain in Late Mesozoic.
Resumo:
The most widespread rock associations in the Western Block of North China Craton are khondalites distributed mainly in Jining, Liangcheng and Datong. A large quantitiy of garnet-bearing granites are contained in the khondalites. A great deal of research has been carried out on them by previous researchers. Studies of these garnet-bearing granites consist essentially of structural characteristics, petrography and geochemistry, and finally geochronological determinations. Summing up these researches, it will not be difficult to see that all of these authors have regarded these large numbers of garnets (up to 20%) contained in granites as crystallized products from magmas, but they have not proved this from petrological perspective. Theoretically, there are possibly three kinds of petrogenesis as to these garnets. The first one is that they have been transferred to the granites from khondalites by melt when anatexis happened to khondalites, and they, in essence, are residual metamorphic garnets; The second one is that when the khondalites were being melted, these garnets were produced from biotite dehydration melting, and the newly formed garnets intruded together with the melt and eventually molded the garnet-bearing granites. Garnets of this possible kind either showed independent crystals, or garnets from khondalites took place secondary growth under favorable temperature and pressure conditions for their crystallization; The last possibility is that these garnets were crystallized from magmas in which suitable pressure, temperature and composition were available. These garnets, generally, should be fine-grained. The aim of this study is, through examining the mineral chemistry of the garnets and the whole rock chemistry, to ascertain under which kind of mechanism, in the world, did these garnets form? Besides, we try to calculate the temperatures under which khondalites began melting and reactions of the garnets and the cooled melts happened by garnet-biotite thermometry. The whole rock chemistry analyses of the garnet-bearing granites tell us that all the samples are strongly peraluminous (A/CNK greater than 1.1) on the A/NK vs. A/CNK plot. On the SiO2-K2O plot, the granites are mainly constrained to be high-K calc-alkaline and calc-alkaline series, consistent with previous researches. On the ACF((Al2O3-Na2O-K2O)-FeO(T)-CaO) discrimination plot, all the six garnet-bearing granite samples drop into the area of S-type granites. The relationship between CaO/Na2O and SiO2 shows that the overwhelming majority of garnet-bearing granites have a CaO/Na2O value over 0.3, revealing that they probably come from metagreywacke precursors or mediate-felsic orthogeneisses compositionally similar to them. Detailed EPMA analyses conducted on the garnets contained in the garnet-bearing granites show that all the garnets are dominated by almandine and pyrope, which occupy 92-96% (Weight Percentage) of each garnet analyzed, typical of granulite facies. Their chemical composition is entirely different from those crystallized in magmas, but extremely similar to those of typical granulite facies metapelites in khondalites and typical granulites, indicating all the garnets to be metamorphogenic. In addition, REEs distribution patterns of the garnets are totally different from typical biotite granites and peraluminous granites. In other words, both LREE and HREE of our garnets are evidently lower than those from these two kinds of rocks. Moreover, compared to the REE pattern of the garnets from typical amphibolites, LREE content of our garnets is obviously higher and HREE content is a little lower. However, REE patterns of our garnets are completely in harmony with those of garnets from typical granulites. So, the REE patterns of garnets, again, prove that all the garnets we studied are metamorphogenic. Biotites appear in two forms, being as inclusions in the garnet and as selvages immediately adjacent to the garnet, respectively. Two reactions and their corresponding temperatures, with the help of petrography and Garnet-Biotite geothermometers, could be obtained, which are Bt+ Pl+ Qtz→Kfs+ Opx+ Grt+ melt as positive reaction and Kfs+ Grt+ melt→Bt+ Pl+ Qtz as reverse reaction, respectively. Summing up the discussion above, we declare that the garnet-bearing granites distributed in the Western Block of North China Craton are the mixture of melts and restites resulted from biotite dehydration melting. The garnets contained in the restites are the products from biotite dehydration melting and restites from the khondalites, respectively.