951 resultados para Acupuncture, Ear
Resumo:
The phloem mobility of heavy metals is relevant to the redistribution of micronutrients and pollutants and, ultimately, to the quality of harvested plant parts. The relative mobility in wheat may vary considerably between different cations. In the study reported here, radio-labeled nickel (Ni), cobalt (Co), manganese (Mn), zinc (Zn) and cadmium (Cd) were introduced into either intact young winter wheat (Triticum aestivum L. cv. Arina) via a leaf flap, or detached maturing shoots via the cut stem. Elements fed into the lamina of the second leaf of 21-day-old plants were translocated to the younger (expanding) leaves and to the roots but not or only in trace amounts to the first (already fully expanded) leaf. The 63Ni and 65Zn were exported more rapidly compared with the other heavy metals. Most of 54Mn was retained in the originally labeled leaf. The peduncle of some maturing shoots was steam-girdled below the ear to distinguish between xylem and phloem transport. This phloem interruption reduced the content of 63Ni in the ear to about 25%. Intermediate effects were observed for 65Zn, 57Co, and 109Cd. Total 54Mn accumulation in the ear was hardly affected by steam-girdling, indicating a transport of this element within the xylem to the ear. These results suggest that the relative phloem mobility of Ni and Zn in young wheat plants and in maturing wheat shoots is higher than the mobility of Co and Cd, whereas the mobility of Mn is very low.
Resumo:
Background: The therapy of retained fetal membranes (RFM) is a controversial subject. In Switzerland, intrauterine antibiotics are routinely administered although their effect on fertility parameters is questionable. The objective of this study was to compare the post-partal period after a routine treatment of RFM in 2 groups: one group received a placebo additionally (A), whereas the other group received a phytotherapeutic substance (lime bark) (B) additionally. The routine treatment of RFM included an attempt to manually remove the fetal membranes (for a maximum of 5 min), intramuscular administration of oxytetracycline and intrauterine treatment with tetracycline. In case of an elevated rectal temperature (>39.0°C), an additional non-steroidal inflam-matory drug was allowed. Methods: Cows undergoing caesarean section, suffering from prolapse of the uterus, deep cervical or vaginal injuries, hypocalcaemia, and illnesses during the last 14 days before calving were excluded. Cows had to be more than 265 days pregnant. Only cows that were artificially inseminated after RFM were included. Group stratification was done according to the last number on the ear tag (even/uneven) with (n = 50) cows in group A and (n = 55) cows in group B. Results: The number of treatments after the initial treatment of RFM was not significantly different between groups. The median interval from calving to the first insemination was 77 days in group A compared to 82 days in group B (p = 0.72). The number of AI’s until conception was not significantly different between groups. The median number of days open was 89 days in group A compared to 96 days in group B (p = 0.57). The culling rate was not significantly different between groups. Conclusion: There was neither a difference between the groups concerning therapies within the first 50 days after RFM nor concerning the subsequent fertility variables.
Resumo:
OBJECTIVE Cochlear implants (CI) are standard treatment for prelingually deafened children and postlingually deafened adults. Computed tomography (CT) is the standard method for postoperative imaging of the electrode position. CT scans accurately reflect electrode depth and position, which is essential prior to use. However, routine CT examinations expose patients to radiation, which is especially problematic in children. We examined whether new CT protocols could reduce radiation doses while preserving diagnostic accuracy. METHODS To investigate whether electrode position can be assessed by low-dose CT protocols, a cadaveric lamb model was used because the inner ear morphology is similar to humans. The scans were performed at various volumetric CT dose-indexes CTDIvol)/kV combinations. For each constant CTDIvol the tube voltage was varied (i.e., 80, 100, 120 and 140kV). This procedure was repeated at different CTDIvol values (21mGy, 11mGy, 5.5mGy, 2.8mGy and 1.8mGy). To keep the CTDIvol constant at different tube voltages, the tube current values were adjusted. Independent evaluations of the images were performed by two experienced and blinded neuroradiologists. The criteria diagnostic usefulness, image quality and artifacts (scaled 1-4) were assessed in 14 cochlear-implanted cadaveric lamb heads with variable tube voltages. RESULTS Results showed that the standard CT dose could be substantially reduced without sacrificing diagnostic accuracy of electrode position. The assessment of the CI electrode position was feasible in almost all cases up to a CTDIvol of 2-3mGy. The number of artifacts did not increase for images within this dose range as compared to higher dosages. The extent of the artifacts caused by the implanted metal-containing CI electrode does not depend on the radiation dose and is not perceptibly influenced by changes in the tube voltage. Summarizing the evaluation of the CI electrode position is possible even at a very low radiation dose. CONCLUSIONS CT imaging of the temporal bone for postoperative electrode position control of the CI is possible with a very low and significantly radiation dose. The tube current-time product and voltage can be reduced by 50% without increasing artifacts. Low-dose postoperative CT scans are sufficient for localizing the CI electrode.
Resumo:
HYPOTHESIS A multielectrode probe in combination with an optimized stimulation protocol could provide sufficient sensitivity and specificity to act as an effective safety mechanism for preservation of the facial nerve in case of an unsafe drill distance during image-guided cochlear implantation. BACKGROUND A minimally invasive cochlear implantation is enabled by image-guided and robotic-assisted drilling of an access tunnel to the middle ear cavity. The approach requires the drill to pass at distances below 1 mm from the facial nerve and thus safety mechanisms for protecting this critical structure are required. Neuromonitoring is currently used to determine facial nerve proximity in mastoidectomy but lacks sensitivity and specificity necessaries to effectively distinguish the close distance ranges experienced in the minimally invasive approach, possibly because of current shunting of uninsulated stimulating drilling tools in the drill tunnel and because of nonoptimized stimulation parameters. To this end, we propose an advanced neuromonitoring approach using varying levels of stimulation parameters together with an integrated bipolar and monopolar stimulating probe. MATERIALS AND METHODS An in vivo study (sheep model) was conducted in which measurements at specifically planned and navigated lateral distances from the facial nerve were performed to determine if specific sets of stimulation parameters in combination with the proposed neuromonitoring system could reliably detect an imminent collision with the facial nerve. For the accurate positioning of the neuromonitoring probe, a dedicated robotic system for image-guided cochlear implantation was used and drilling accuracy was corrected on postoperative microcomputed tomographic images. RESULTS From 29 trajectories analyzed in five different subjects, a correlation between stimulus threshold and drill-to-facial nerve distance was found in trajectories colliding with the facial nerve (distance <0.1 mm). The shortest pulse duration that provided the highest linear correlation between stimulation intensity and drill-to-facial nerve distance was 250 μs. Only at low stimulus intensity values (≤0.3 mA) and with the bipolar configurations of the probe did the neuromonitoring system enable sufficient lateral specificity (>95%) at distances to the facial nerve below 0.5 mm. However, reduction in stimulus threshold to 0.3 mA or lower resulted in a decrease of facial nerve distance detection range below 0.1 mm (>95% sensitivity). Subsequent histopathology follow-up of three representative cases where the neuromonitoring system could reliably detect a collision with the facial nerve (distance <0.1 mm) revealed either mild or inexistent damage to the nerve fascicles. CONCLUSION Our findings suggest that although no general correlation between facial nerve distance and stimulation threshold existed, possibly because of variances in patient-specific anatomy, correlations at very close distances to the facial nerve and high levels of specificity would enable a binary response warning system to be developed using the proposed probe at low stimulation currents.
Resumo:
Aminoglycosides are commonly prescribed antibiotics with deleterious side effects to the inner ear. Due to their popular application as a result of their potent antimicrobial activities, many efforts have been undertaken to prevent aminoglycoside ototoxicity. Over the years, understanding of the antimicrobial as well as ototoxic mechanisms of aminoglycosides has increased. These mechanisms are reviewed in regard to established and potential future targets of hair cell protection.
Resumo:
A 39-year-old white man presented with a swollen left upper eyelid secondary to progressive acute bacterial rhinosinusitis (ABRS). Physical examination found a 40% reduction in vision in the left eye and right-sided erythematous temporal swelling with tenderness to palpation. Computed tomography revealed the presence of an inflammatory lesion in the left orbit. Duplex ultrasonography demonstrated a thrombotic occlusion in the right superficial temporal vein (STV). For treatment of the complicated ARBS, the patient received intravenous antibiotics and underwent surgery. The STV thrombophlebitis was treated with low-molecular-weight heparin. Postoperatively, the patient recovered completely and his vision normalized; 10 days later, duplex ultrasonography showed a patent STV. The development of contralateral STV thrombophlebitis is conceivably facilitated by venous anastomoses of the scalp in the front of the head. As a result, embolic spread would be a possible complication of infectious ABRS foci communicating with intraorbital and pericranial veins. To the best of our knowledge, this is the first reported case of such a complication of ARBS in the literature.
Resumo:
GOAL We present the development of a boneanchored port for the painless long-term hemodialytic treatment of patients with renal failure. This port is implanted behind the ear. METHODS The port was developed based on knowledge obtained from long-term experience with implantable hearing devices, which are firmly anchored to the bone behind the ear. This concept of bone anchoring was adapted to the requirements for a vascular access during hemodialysis. The investigational device is comprised of a base plate that is firmly fixed with bone screws to the bone behind the ear (temporal bone). A catheter leads from the base plate valve block through the internal jugular vein and into the right atrium. The valves are opened using a special disposable adapter, without any need to puncture the blood vessels. Between hemodialysis sessions the port is protected with a disposable cover. RESULTS Flow rate, leak tightness and purification were tested on mockups. Preoperative planning and the surgical procedure were verified in 15 anatomical human whole head specimens. CONCLUSION Preclinical evaluations demonstrated the technical feasibility and safety of the investigational device. SIGNIFICANCE Approximately 1.5 million people are treated with hemodialysis worldwide, and 25% of the overall cost of dialysis therapy results from vascular access problems. New approaches towards enhancing vascular access could potentially reduce the costs and complications of hemodialytic therapy.
Resumo:
OBJECTIVES Creation of an atraumatic, hearing-preservation cochleostomy is integral to the future of minimally invasive inner ear surgery. The goal of this study was to develop and characterize a novel chemical approach to cochleostomy. STUDY DESIGN Prospective animal study. SETTING Laboratory. METHODS Experimental animal study in which phosphoric acid gel (PAG) was used to decalcify the otic capsule in 25 Hartley guinea pigs. Five animals in each of 5 surgical groups were studied: (1) mechanically opening the auditory bulla alone, (2) PAG thinning of the basal turn otic capsule, leaving endosteum covered by a layer of bone, (3) micro-pick manual cochleostomy, (4) PAG chemical cochleostomy, exposing the endosteum, and (5) combined PAG/micro-pick cochleostomy, with initial chemical thinning and subsequent manual removal of the last osseous layer. Preoperative and postoperative auditory brainstem responses and otoacoustic emissions were obtained at 2, 6, 10, and 16 kHz. Hematoxylin and eosin-stained paraffin sections were compared. RESULTS Surgical and histologic findings confirmed that application of PAG provided reproducible local bone removal, and cochlear access was enabled. Statistically significant auditory threshold shifts were observed at 10 kHz (P = .048) and 16 kHz (P = .0013) following cochleostomy using PAG alone (group 4) and at 16 kHz using manual cochleostomy (group 3) (P = .028). No statistically significant, postoperative auditory threshold shifts were observed in the other groups, including PAG thinning with manual completion cochleostomy (group 5). CONCLUSION Hearing preservation cochleostomy can be performed in an animal model using a novel technique of thinning cochlear bone with PAG and manually completing cochleostomy.
Resumo:
OBJECTIVE Vestibular neuritis is often mimicked by stroke (pseudoneuritis). Vestibular eye movements help discriminate the two conditions. We report vestibulo-ocular reflex (VOR) gain measures in neuritis and stroke presenting acute vestibular syndrome (AVS). METHODS Prospective cross-sectional study of AVS (acute continuous vertigo/dizziness lasting >24 h) at two academic centers. We measured horizontal head impulse test (HIT) VOR gains in 26 AVS patients using a video HIT device (ICS Impulse). All patients were assessed within 1 week of symptom onset. Diagnoses were confirmed by clinical examinations, brain magnetic resonance imaging with diffusion-weighted images, and follow-up. Brainstem and cerebellar strokes were classified by vascular territory-posterior inferior cerebellar artery (PICA) or anterior inferior cerebellar artery (AICA). RESULTS Diagnoses were vestibular neuritis (n = 16) and posterior fossa stroke (PICA, n = 7; AICA, n = 3). Mean HIT VOR gains (ipsilesional [standard error of the mean], contralesional [standard error of the mean]) were as follows: vestibular neuritis (0.52 [0.04], 0.87 [0.04]); PICA stroke (0.94 [0.04], 0.93 [0.04]); AICA stroke (0.84 [0.10], 0.74 [0.10]). VOR gains were asymmetric in neuritis (unilateral vestibulopathy) and symmetric in PICA stroke (bilaterally normal VOR), whereas gains in AICA stroke were heterogeneous (asymmetric, bilaterally low, or normal). In vestibular neuritis, borderline gains ranged from 0.62 to 0.73. Twenty patients (12 neuritis, six PICA strokes, two AICA strokes) had at least five interpretable HIT trials (for both ears), allowing an appropriate classification based on mean VOR gains per ear. Classifying AVS patients with bilateral VOR mean gains of 0.70 or more as suspected strokes yielded a total diagnostic accuracy of 90%, with stroke sensitivity of 88% and specificity of 92%. CONCLUSION Video HIT VOR gains differ between peripheral and central causes of AVS. PICA strokes were readily separated from neuritis using gain measures, but AICA strokes were at risk of being misclassified based on VOR gain alone.
Resumo:
BACKGROUND Several studies show yoga may benefit chronic pain management. We investigated the effect of a single yoga session on the perception of pain, measured by a standardized pain provocation test in healthy yoga participants while also comparing pain perception to participants' own expectations. MATERIALS AND METHODS Ninety yoga participants were recruited at hatha yoga schools in Switzerland. Pain perception was measured with a standardized algometric pain provocation test; i.e., a calibrated peg was applied for 10 seconds after which the participant rated pain intensity on a 0-10 numerical rating scale. The test was applied to the middle finger, ear lobe, and second toe before and after a 60-minute yoga session. RESULTS Sixty out of 90 (66.7%) yoga participants expected a reduced pain perception after the yoga session. However, 36 (40%) participants actually experienced less pain after compared to before the yoga session. But overall, pain perception statistically did not significantly change from before to after the yoga session at any of the three body locations assessed. The expectations and also the previous yoga experience did not significantly influence the participants' pain perception. CONCLUSIONS Regardless of the high positive expectations on the influence of yoga on pain, a single yoga session does not significantly influence pain perception induced by a pain provocation test. Hypoalgesic effects of yoga should be explained otherwise.
Resumo:
Cochlear implants are neuroprostheses that are inserted into the inner ear to directly electrically stimulate the auditory nerve, thus replacing lost cochlear receptors, the hair cells. The reduction of the gap between electrodes and nerve cells will contribute to technological solutions simultaneously increasing the frequency resolution, the sound quality and the amplification of the signal. Recent findings indicate that neurotrophins (NTs) such as brain derived neurotrophic factor (BDNF) stimulate the neurite outgrowth of auditory nerve cells by activating Trk receptors on the cellular surface (1–3). Furthermore, small-size TrkB receptor agonists such as di-hydroxyflavone (DHF) are now available, which activate the TrkB receptor with similar efficiency as BDNF, but are much more stable (4). Experimentally, such molecules are currently used to attract nerve cells towards, for example, the electrodes of cochlear implants. This paper analyses the scenarios of low dose aspects of controlled release of small-size Trk receptor agonists from the coated CI electrode array into the inner ear. The control must first ensure a sufficient dose for the onset of neurite growth. Secondly, a gradient in concentration needs to be maintained to allow directive growth of neurites through the perilymph-filled gap towards the electrodes of the implant. We used fluorescein as a test molecule for its molecular size similarity to DHF and investigated two different transport mechanisms of drug dispensing, which both have the potential to fulfil controlled low-throughput drug-deliverable requirements. The first is based on the release of aqueous fluorescein into water through well-defined 60-μm size holes arrays in a membrane by pure osmosis. The release was both simulated using the software COMSOL and observed experimentally. In the second approach, solid fluorescein crystals were encapsulated in a thin layer of parylene (PPX), hence creating random nanometer-sized pinholes. In this approach, the release occurred due to subsequent water diffusion through the pinholes, dissolution of the fluorescein and then release by out-diffusion. Surprisingly, the release rate of solid fluorescein through the nanoscopic scale holes was found to be in the same order of magnitude as for liquid fluorescein release through microscopic holes.
Resumo:
Recently, ocular vestibular evoked myogenic potentials (oVEMP) have emerged as a tool for assessment of utricular function. They are short-latency myogenic potentials which can be elicited in response to vestibular stimulation, e.g. by air-conducted sound (ACS) or bone-conducted vibration (BCV) (reviewed in (Kantner and Gurkov, 2012)). Otolithic afferent neurons trigger reflexive electromyographic activity of the extraocular muscles which can be recorded beneath the eye contralateral to the stimulated ear by use of surface electrodes.
Resumo:
Nogo-A is a myelin associated protein and one of the most potent neurite growth inhibitors in the central nervous system. Interference with Nogo-A signaling has thus been investigated as therapeutic target to promote functional recovery in CNS injuries. Still, the finding that Nogo-A presents a fairly ubiquitous expression in many types of neurons in different brain regions, in the eye and even in the inner ear suggests for further functions besides the neurite growth repression. Indeed, a growing number of studies identified a variety of functions including regulation of neuronal stem cells, modulation of microglial activity, inhibition of angiogenesis and interference with memory formation. Aim of the present commentary is to draw attention on these less well-known and sometimes controversial roles of Nogo-A. Furthermore, we are addressing the role of Nogo-A in neuropathological conditions such as ischemic stroke, schizophrenia and neurodegenerative diseases.
Resumo:
OBJECTIVE Ocular vestibular-evoked myogenic potentials (oVEMPs) represent extraocular muscle activity in response to vestibular stimulation. The authors sought to investigate whether posture-induced increase of the intracranial pressure (ICP) modulated oVEMP frequency tuning, that is, the amplitude ratio between 500-Hz and 1000-Hz stimuli. DESIGN Ten healthy subjects were enrolled in this study. The subjects were positioned in the horizontal plane (0 degree) and in a 30-degree head-downwards position to elevate the ICP. In both positions, oVEMPs were recorded using 500-Hz and 1000-Hz air-conducted tone bursts. RESULTS When tilting the subject from the horizontal plane to the 30-degree head-down position, oVEMP amplitudes in response to 500-Hz tone bursts distinctly decreased (3.40 μV versus 2.06 μV; p < 0.001), whereas amplitudes to 1000 Hz were only slightly diminished (2.74 μV versus 2.48 μV; p = 0.251). Correspondingly, the 500/1000-Hz amplitude ratio significantly decreased when tilting the subjects from 0- to 30-degree inclination (1.59 versus 1.05; p = 0.029). Latencies were not modulated by head-down position. CONCLUSIONS Increasing ICP systematically alters oVEMPs in terms of absolute amplitudes and frequency tuning characteristics. oVEMPs are therefore in principle suited for noninvasive ICP monitoring.
Resumo:
Detached wheat shoots (ear with peduncle and flag leaf) were incubated for 4 d in a solution containing 1 mM RbCl and 1 mM SrCl2 as well as 10, 40 or 160 µM NiCl2 and CoCl2. The phloem of some plants was interrupted by steam-girdling the stem below the ear to distinguish between xylem and phloem transport. The phloem-immobile Sr flowed mainly to the leaf lamina and to the glumes via the xylem. The Sr transport was not sensitive to steam-girdling. In contrast, the phloem-mobile Rb accumulated during the incubation time mainly in the stem and the leaf sheath. The Rb transport to the grains was impaired by steam-girdling as well as by elevated Ni and Co concentrations in the incubation solution indicating that Rb was transported via the phloem to the maturing grains and that this transport was affected by the heavy metals. Ni was removed more efficiently from the xylem in the peduncle than Co (but far less efficiently than Rb). It became evident that the two heavy metals can also be transferred from the xylem to the phloem in the stem of wheat and reach the maturing grains via the phloem.