924 resultados para ABORTIVE PLANT EFFECTS
Resumo:
γ-Irradiation doses of 0.5 (target) and 1.0 (high) kGy were applied as insect disinfestation treatments to 'Kensington Pride' mango fruit. The effects of these treatments on fruit physicochemical properties and aroma volatile production were investigated and compared to non-irradiated controls. There were no significant effects of the irradiation treatments on flesh total soluble solids content. However, the loss of green skin colour usually associated with fruit ripening was inhibited by irradiation at both 0.5 and 1.0 kGy by approximately 32 and 52%, respectively, relative to non-irradiated fruit. Fruit exposed to 0.5 and 1.0 kGy exhibited a 58 and 80% reduction in emission of a-terpinolene volatiles, respectively. Thus, γ-irradiation at 0.5 and 1.0 kGy can have an adverse effect on 'Kensington Pride' mango fruit aroma volatile production and skin colouration.
Resumo:
Nitrogen (N) is an essential plant nutrient in maize production, and if considering only natural sources, is often the limiting factor world-wide in terms of a plant’s grain yield. For this reason, many farmers around the world supplement available soil N with synthetic man-made forms. Years of over-application of N fertilizer have led to increased N in groundwater and streams due to leaching and run-off from agricultural sites. In the Midwest Corn Belt much of this excess N eventually makes its way to the Gulf of Mexico leading to eutrophication (increase of phytoplankton) and a hypoxic (reduced oxygen) dead zone. Growing concerns about these types of problems and desire for greater input use efficiency have led to demand for crops with improved N use efficiency (NUE) to allow reduced N fertilizer application rates and subsequently lower N pollution. It is well known that roots are responsible for N uptake by plants, but it is relatively unknown how root architecture affects this ability. This research was conducted to better understand the influence of root complexity (RC) in maize on a plant’s response to N stress as well as the influence of RC on other above-ground plant traits. Thirty-one above-ground plant traits were measured for 64 recombinant inbred lines (RILs) from the intermated B73 & Mo17 (IBM) population and their backcrosses (BCs) to either parent, B73 and Mo17, under normal (182 kg N ha-1) and N deficient (0 kg N ha-1) conditions. The RILs were selected based on results from an earlier experiment by Novais et al. (2011) which screened 232 RILs from the IBM to obtain their root complexity measurements. The 64 selected RILs were comprised of 31 of the lowest complexity RILs (RC1) and 33 of the highest complexity RILs (RC2) in terms of root architecture (characterized as fractal dimensions). The use of the parental BCs classifies the experiment as Design III, an experimental design developed by Comstock and Robinson (1952) which allows for estimation of dominance significance and level. Of the 31 traits measured, 12 were whole plant traits chosen due to their documented response to N stress. The other 19 traits were ear traits commonly measured for their influence on yield. Results showed that genotypes from RC1 and RC2 significantly differ for several above-ground phenotypes. We also observed a difference in the number and magnitude of N treatment responses between the two RC classes. Differences in phenotypic trait correlations and their change in response to N were also observed between the RC classes. RC did not seem to have a strong correlation with calculated NUE (ΔYield/ΔN). Quantitative genetic analysis utilizing the Design III experimental design revealed significant dominance effects acting on several traits as well as changes in significance and dominance level between N treatments. Several QTL were mapped for 26 of the 31 traits and significant N effects were observed across the majority of the genome for some N stress indicative traits (e.g. stay-green). This research and related projects are essential to a better understanding of plant N uptake and metabolism. Understanding these processes is a necessary step in the progress towards the goal of breeding for better NUE crops.
Resumo:
Water use efficiency (WUE) is considered as a determinant of yield under stress and a component of crop drought resistance. Stomatal behavior regulates both transpiration rate and net assimilation and has been suggested to be crucial for improving crop WUE. In this work, a dynamic model was used to examine the impact of dynamic properties of stomata on WUE. The model includes sub-models of stomatal conductance dynamics, solute accumulation in the mesophyll, mesophyll water content, and water flow to the mesophyll. Using the instantaneous value of stomatal conductance, photosynthesis, and transpiration rate were simulated using a biochemical model and Penman-Monteith equation, respectively. The model was parameterized for a cucumber leaf and model outputs were evaluated using climatic data. Our simulations revealed that WUE was higher on a cloudy than a sunny day. Fast stomatal reaction to light decreased WUE during the period of increasing light (e.g., in the morning) by up to 10.2% and increased WUE during the period of decreasing light (afternoon) by up to 6.25%. Sensitivity of daily WUE to stomatal parameters and mesophyll conductance to CO2 was tested for sunny and cloudy days. Increasing mesophyll conductance to CO2 was more likely to increase WUE for all climatic conditions (up to 5.5% on the sunny day) than modifications of stomatal reaction speed to light and maximum stomatal conductance.
Resumo:
Aquatic ecosystems are final collectors of all kinds of pollution as an outcome of anthropogenic inputs, such us untreated industrial and municipal sewage and agricultural pollutants. There are several aquatic ecosystems that are threatened by mineral and organic pollution. In Northeastern Portugal, near Bragança, different watercourses are suffering negative impacts of human activities. It has been developed several studies in the monitoring of environmental impacts in these river basins, namely in Rio Fervença, affected by organic pollution, and in Portelo stream, affected, since 2009, by the collapse and continuous input of mining deposits. In this sense, the present study aimed to continue the monitoring study of ecological status of freshwater ecosystems of Northeastern Portugal, namely the following objectives: a) mineral pollution effects of mining deposits sudden incorporated into Portelo stream; b) organic pollution due to domestic and industrial inputs in River Fervença. Also, since fish are useful experimental models to evaluate toxicological mechanisms of contaminants, c) acute toxicity tests with Cu were conducted in laboratory conditions. During 2015/2016, it was made abiotic and biotic characterization of 16 sampling sites distributed by both Portelo and Fervença rivers, tributaries of main River Sabor (Douro Basin). Several physicochemical parameters were determined and Riparian Quality (QBR Index) and Channel Quality (GQC) Indexes were determined for habitat evaluation. Fish and invertebrate communities were sampled, according to protocols of Water Framework Directive (WFD). Several metrics were determined, with particular emphasis on the Biotic Index IBMWP and the Northern Portuguese Invertebrate Index (IPtIN). Acute toxicity tests were conducted with an Iberian fish species, common barbel (Luciobarbus bocagei) and some plasmatic electrolytes levels were evaluated, to assess their contribution to mitigate osmoregulatory adverse effects of Cu. Also, same electrolytes were measured after changing to clean water, in attempt to assess fish capacity to reverse this situation. Results obtained for both rivers showed a significant level of disturbance that affected decisively water, habitat and biological quality of aquatic ecosystems. Mineral and Organic Pollution in River Sabor (NE Portugal): Ecotoxicological Effects on Freshwater Fauna Due to this change of environmental conditions in Portelo stream (extreme pH values, high conductivity and presence of heavy metals), several biological metrics (e.g. taxonomic richness, abundance, diversity, evenness) confirmed, comparatively with reference sites, a substantial decrease on ecological integrity status. The same pattern was found for Fervença River; however other water parameters, namely the content of most limiting nutrients (e.g. N and P) seemed to have more influence in the composition and structure of macroinvertebrate and fish communities. In fact, despite the operation of the Sewage Treatment Plant of Bragança, Fervença River presented significant levels of disturbance that affected decisively the quality and ecological integrity of the aquatic ecosystem. The synergic effect of domestic and industrial pollution, intensive agriculture, regulation and degradation of aquatic and riparian habitats contributed to the decrease of ecological condition, namely in the downstream zones (after Bragança). The results for acute toxicity, showed that fish can change Na+ and K+ levels face to Cu exposition and, depending of Cu concentration tested, can also return to normal levels, providing some insights to that are believed to occurred in fish population, near the Portelo mines. The low ecological integrity status detected in the lotic ecosystems in NE Portugal as a result of mineral and organic pollution deserves the development of several measures for rehabilitation and improving of water quality. On the other hand, environmental education actions are needed to contribute to improvement of ecological integrity of the river and its conservation.
Resumo:
Plant performance is significantly influenced by prevailing light and temperature conditions during plant growth and development. For plants exposed to natural fluctuations in abiotic environmental conditions it is however laborious and cumbersome to experimentally assign any contribution of individual environmental factors to plant responses. This study aimed at analyzing the interplay between light, temperature and internode growth based on model approaches. We extended the light-sensitive virtual plant model L-Cucumber by implementing a common Arrhenius function for appearance rates, growth rates, and growth durations. For two greenhouse experiments, the temperature-sensitive model approach resulted in a precise prediction of cucumber mean internode lengths and number of internodes, as well as in accurately predicted patterns of individual internode lengths along the main stem. In addition, a system's analysis revealed that environmental data averaged over the experimental period were not necessarily related to internode performance. Finally, the need for a species-specific parameterization of the temperature response function and related aspects in modeling temperature effects on plant development and growth is discussed.
Resumo:
Tomato (Solanum lycopersicum L.) is an important vegetable crop and often cultivated in regions exposed to salinity and high temperatures (HT) which change plant architecture, decrease canopy light interception and disturb physiological functions. However, the long-term effects of salinity and HT combination (S+HT) on plant growth are still unclear. A dynamic functional-structural plant model (FSPM) of tomato was parameterized and evaluated for different levels of S+HT combinations. The evaluated model was used to quantify the contributions of morphological changes (architectural effects) and physiological disturbances (non-architectural effects) on the reduction of shoot dry mass under S+HT. The model predicted architectural variables with high accuracy (>85%), which ensured the reliability of the model analyses. HT enhanced architectural effects but reduced non-architectural effects of salinity on dry mass production. The stronger architectural effects of salinity under HT could not be counterbalanced by the smaller non-architectural effects. Therefore, long-term influences of HT on shoot dry mass under salinity were negative at the whole plant level. Our model analysis highlights the importance of plant architecture at canopy level in studying the plant responses to the environments and shows the merits of dynamic FSPMs as heuristic tools.
Resumo:
Food irradiation is a treatment that involves subjecting in-bulk or packaged food to a controlled dose of ionizing radiation, with a clearly defined goal. It has been used for disinfestation and sanitization of food commodities and to retard postharvest ripening and senescence processes, being a sustainable alternative to chemical agents 1 . Doses up to 10 kGy are approved by several international authorities for not offering negative effects to food from a nutrition and toxicology point of view 2 . However, the adoption of this technology for food applications has been a slow process due to some misunderstandings by the consumer who often chooses non-irradiated foods. In this study, the effects of the ionizing radiation treatment on physical, chemical and bioactive properties of dried herbs and its suitability for preserving quality attributes of fresh vegetables during cold storage were evaluated. The studied herbs, perennial spotted rockrose (Tuberaria lignosa (Sweet) Samp.) and common mallow (Malva neglecta Wallr.) were freeze-dried and then irradiated up to 10 kGy in a Cobalt-60 chamber. The selected vegetables, watercress (Nasturtium officinale R. Br.) and buckler sorrel (Rumex induratus Boiss. Reut.) were rinsed in tap water, packaged in polyethylene bags, submitted to irradiation doses up to 6 kGy and then were stored at 4 C for a period of up to 12 days. Physical, chemical and bioactive parameters of irradiated and non-irradiated samples were evaluated using different methodologies the colour was measured with a colorimeter, individual chemical compounds were analyzed by chromatographic techniques, antioxidant properties were evaluated using in vitro assays based on different reaction mechanisms, and other quality analyses were performed following official methods of analysis. The irradiation treatment did not significantly affect the colour of the perennial spotted rockrose samples, or its phenolic composition and antioxidant activity 3 . Medium doses preserved the colour of common mallow and a low dose did not induce any adverse effect in the organic acids profile. The green colour of the irradiated vegetables was maintained during cold storage but the treatment had pros and cons in other quality attributes. The 2 kGy dose preserved free sugars and favoured polyunsaturated fatty acids (PUFA) while the 5 kGy dose favoured tocopherols and preserved the antioxidant properties in watercress samples. The 6 kGy dose was a suitable option for preserving PUFA and the ω-6 ω-3 fatty acids ratio in buckler sorrel samples. This comprehensive experimental work allowed selecting appropriate processing doses for the studied plant foods in order to preserve its quality attributes and edibility.
Resumo:
Aging process is conceived as a normal stage during human life cycle, but it is also considered a hot topic among scientists and medical community. Alarming rates of premature aging and oxidative stress-related diseases have increasingly affect human individuals. Stress, pollution and exposition to chemical substances are considered the main triggering factors for those conditions; in addition, they also suppress the immune system and, therefore, improve organic vulnerability and occurrence of opportunistic infections [I]. Apart from the associated morbidity and mortality, the increasing rates of antimicrobial resistance improve the severity of the clinical conditions [2]. Botanical preparations possess a multitude of bioactive properties, namely acting as antimicrobials, antioxidants, and homeostasis modulators. Thus, upcoming alternatives, mainly based in plant phytochemicals, are necessary to improve the wellbeing as also life expectancy of individuals. The present study aims to evaluate and to compare both antioxidant and antimicrobial properties of plant extracts rich in phenolic compounds. Among the tested plants, Glycyrrhiza glabra L. (licorice) evidenced the most pronounced free radicals scavenging and antimicrobial effects, followed by Salvia officina/is L. (sage), Thymus vulgaris L. (thyme) and Origanum vulgare L. (oregano). Eucalyptus globulus Labill. (blue gum) and Juglans regia L. (walnut) also showed a high effect, while Pterospartum tridentatum (L.) Willk. (carqueja) and Rubus ulmifolius Schott (elm leaf blackberry) displayed moderate effects, and lastly, Tabebuia impetigirwsa (Mart. ex DC) Standley (pau d'arco), Foeniculum vulgare Miller (fennel), Rosa canina L. (rose hips) and Matricaria recutita L. (chamomile) gave only slight effects. In general, the most pronounced bioactivities were observed in the plant preparations (infusion>decoction>hydromethanolic extract) with higher levels of phenolic compounds (both flavonoids and phenolic acids). The observed synergisms between the phenolic compounds present in the extracts highlight the use of phytochemicals as future health promoters. However, further studies are necessary to understand the effective mode of action of individual phenolic constituents as also the existence of polyvalence relationships between them.
Resumo:
Irradiation is a methodology qualified for dry ingredients preservation or decontamination and can be performed using various radiation sources and energy levels in accordance with the objectives to be achieved [1]. Electron beam irradiation is used mainly for food products with low density, while gamma irradiation is mainly used for large volumes [2]. Arenaria Montana L. has a high antioxidant potential and richness in bioactive phytochemicals. It is used in Portuguese traditional medicine, acting therapeutically as an anti-inflammatory and diuretic plant [3]. The aim of this work was to evaluate the effects of gamma and electron beam irradiation at different doses (I and 10 kGy) in the antioxidant activity of A. montana. Free radicals scavenging activity, reducing power and lipid peroxidation inhibition properties of its methanolic extracts and infusions were evaluated. Through a global analysis, it was concluded that the antioxidant activity proved to be higher in methanolic extracts in comparison with the infusions, where it decreased with increasing irradiation dose regardless of the technology used (gamma or electron beam). For methanolic extracts, electron beam resulted in increased antioxidant activity while gamma irradiation caused a decrease in these extracts. Thus, the antioxidant potential is variable depending not only on the type of radiation and the dose applied, but also on the solvent used in the preparation of the extracts (methanol or water).
Resumo:
The Asteraceae family is spread worldwide. In Portugal, there are more than 300 species, standing out as one of the botanical families with largest representation in the Portuguese flora. Coleostephus myconis (L.) Rchb.f. is a scarcely studied Asteraceae species, characterized as having ruderal growth and persistence in abandoned soils (an expanding problem due to the desertification phenomena in rural areas). In this work, the flowers of C. myconis were collected in three different flowering stages (i: flower bud; ii: flower in anthesis; iii: senescent flower) from the Northwestern area of the Portuguese territory. Powdered samples (1 g) were extracted twice with ethanol:water 50:50 (v/v). After removing solvents, the combined extracts were re-dissolved, filtered through 0.22-μm disposable LC filter disks and analyzed by high performance liquid chromatography coupled to a diode array detector and electrospray ionization-mass spectrometry (HPLC-DAD/ESI-MS). The phenolic compounds were characterized according to their UV and mass spectra, and retention times. For the quantitative analysis, calibration curves of standard compounds were used. According to the UV spectra (λmax = 314-330 nm) and pseudomolecular ions ([M-H]-) at m/z 353 and 515, all producing an m/z 191 ion, four compounds derived from quinic acid were detected: 3-O-caffeoylquinic acid (Figure 1A), 5-O-caffeoylquinic acid (Figure 1B), 3,5-O-dicaffeoylquinic acid (Figure 1C) and 4,5-O-dicaffeoylquinic acid (Figure 1D), as also supported by the literature [1,2]. A fifth phenolic acid was identified as protocatechuic acid. The detected flavonoid were quercetin-O-glucuronide, quercetin-3-Oglucoside, myricetin-O-methyl-hexoside and a second glycosylated myricetin (not possible to identify completely). Some statistically significant changes were detected among the different assayed flowering stages; nevertheless, 3,5-O-dicaffeoylquinic acid was the major compound, independently of the phenologic stage. According to the previous results, C. myconis might be considered as a potential natural source of these valuable bioactive compounds, especially considering the high botanical representativeness of this plant and its inexpensiveness.
Resumo:
Time series of physico-chemical data and concentrations (cell L-1) of the toxic dinoflagellate Alexandrium minutum collected in the Rance macrotidal estuary (Brittany, France) were analyzed to understand the physico-chemical processes of the estuary and their relation to changes in bloom development from 1996 to 2009. The construction of the tidal power plant in the north and the presence of a lock in the south have greatly altered hydrodynamics, blocking the zone of maximum turbidity upstream, in the narrowest part of the estuary. Alexandrium minutum occurs in the middle part of the estuary. Most physical and chemical parameters of the Rance estuary are similar to those observed elsewhere in Brittany with water temperatures between 15–18 °C, slightly lowered salinities (31.8–33.1 PSU), low river flow rates upstream and significant solar radiation (8 h day-1). A notable exception is phosphate input from the drainage basin which seems to limit bloom development: in recent years, bloom decline can be significantly correlated with the decrease in phosphate input. On the other hand, the chemical processes occurring in the freshwater-saltwater interface do not seem to have an influence on these occurrences. The other hypotheses for bloom declines are discussed, including the prevalence of parasitism, but remain to be verified in further studies.
Resumo:
The paper evaluates the effects of organic and inorganic fertilizers on the growth of okra (variety NH-Ae 47-4. Organic fertilizers (cow dung and poultry droppings) and inorganic (NPK 15:15:15 and Urea 64:0) fertilizers were used for the experiment. The fertilizers were weighed and applied at 5g, 10g and 15g and were replicated three times and each having a control. Vegetative growth parameters taken include, shoot fresh weight (g), dry weight (g), plant height (cm), leaf number, stem girth (cm), leaf area (cm2). The results obtained from the experiment showed that the effect of the treatments were significantly difference from the control for all the parameters accessed with urea fertilizer having least effect. Plants treated with poultry litters have best performance by recording the highest fresh and dry weight (0.39g) at 4 weeks after planting (WAP); highest stem height 29.33cm for all the concentrations applied. Similarly, it has highest leaf area and stem girth (64.67cm2and 2.23cm respectively) at 8WAP.
Resumo:
The liver is one of the most important organs of human body, being involved in several vital functions and regulation of physiological processes. Given its pivotal role in the excretion of waste metabolites and drugs detoxification, the liver is often subjected to oxidative stress that leads to lipid peroxidation and severe cellular damage. The conventional treatments of liver diseases such as cirrhosis, fatty liver and chronic hepatitis are frequently inadequate due to side effects caused by hepatotoxic chemical drugs. To overcome this problematic paradox, medicinal plants, owing to their natural richness in phenolic compounds, have been intensively exploited concerning their extracts and fraction composition in order to find bioactive compounds that could be isolated and applied in the treatment of liver ailments. The present review aimed to collect the main results of recent studies carried out in this field and systematize the information for a better understanding of the hepatoprotective capacity of medicinal plants in in vitro and in vivo systems. Generally, the assessed plant extracts revealed good hepatoprotective properties, justifying the fractionation and further isolation of phenolic compounds from different parts of the plant. Twenty-five phenolic compounds, including flavonoids, lignan compounds, phenolic acids and other phenolic compounds, have been isolated and identified, and proved to be effective in the prevention and/or treatment of chemically induced liver damage. In this perspective, the use of medicinal plant extracts, fractions and phenolic compounds seems to be a promising strategy to avoid side effects caused by hepatotoxic chemicals.
Resumo:
Flavonoids are potent anti-inflammatory compounds isolated from several plant extracts, and have been used experimentally against inflammatory processes. In this work, a PLA(2) isolated from the Crotalus durissus cascavella venom and rat paw oedema were used as a model to. study the effect of flavonoids on PLA(2). We observed that a treatment of PLA(2) with morin induces several modifications in the aromatic amino acids, with accompanying changes in its amino acid composition. In addition, results from circular dichroism spectroscopy and UV scanning revealed important structural modifications. Concomitantly, a considerable decrease in the enzymatic and antibacterial activities was observed, even though anti-inflammatory and neurotoxic activities were not affected. These apparent controversial results may be an indication that PLA(2) possess a second pharmacological site which does not affect or depend on the enzymatic activity. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Dissertação de mestrado, Aquacultura, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014