978 resultados para 7039-111


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Downhole magnetic field measurements were conducted in Hole 504B on the Costa Rica Ridge during ODP Leg 111. Three magnetic groups within oceanic basement at this site are tentatively defined, based on the interval mean values of the downhole magnetic field. Statistical analyses show that there are significant differences in the inclinations of natural remanent magnetization (NRM) among the three magnetic groups. Although this could be caused by various factors, we explain the inclination difference among the three groups by simple tectonic displacements of basement by faulting after its formation, about 5.9 Ma ago. Based on the intensities of NRM and inclinations measured in the basement core samples drilled in Hole 504B on DSDP Legs 69, 70, and 83 and ODP Leg 111, the investigated section of basement formation can be divided into three or four magnetic zones that parallel the zones defined by the downhole magnetic field, alteration, and lithology. Downhole magnetic field and paleomagnetic data generally correlate positively, in spite of some discrepancies. The magnetic susceptibility values of the core samples were used to derive the insitu NRM from the downhole magnetic field data.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hole 504B in the eastern equatorial Pacific has been the focus of five scientific drilling expeditions since it was first drilled in 1979. During these five legs, a series of temperature logs has been obtained over a time span of almost 8 yr, documenting the geothermal and hydrologic state of the oceanic crust in this region. Immediately following reentry at the onset of ODP Leg 111 operations, a high-resolution temperature probe was lowered into the borehole and a precise record of temperature vs. depth in Hole 504B was recorded down to 1300 mbsf. As was observed during previous legs, the temperature gradient in the upper 400 m was reduced, indicating that downhole flow of cool ocean waters through the casing continued, though at a diminished rate. As subhydrostatic pressures in the upper basement have gradually diminished, the volume of flow has decayed from an estimated 6000-7000 L/hr in late 1979 to about 80 L/hr during Leg 111. At depths below 480 mbsf, a predominantly conductive heat transfer environment enabled the temperature gradient log to be analyzed with respect to lithology on both fine and broad scales. Anomalies in the gradient log in the cased section through the sedimentary column were found to correspond to biostratigraphic age markers and/or sharp changes in sediment composition and texture. Broad variations in temperature gradient within the basement correlated with large-scale porosity trends. Conductive heatflow estimates depict a systematic reduction with depth, ranging from approximately 196 mW/m**2 in the sediments to 120 ± 17 mW/m**2 at 1300 mbsf. Possible causes for this observation were examined from several perspectives, but none was suitably convincing. A fluid instability analysis indicated the likely existence of convection cells within the borehole and substantiated the hypothesis of mixing within the borehole postulated from isotopic and chemical studies of borehole waters. However, such mixing of borehole fluids does not provide an adequate explanation for the heatflow variations, and the disparity between surficial and deep values of heat flow remains unresolved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At head of title: U.S. Treasury Dept. Bureau of Internal Revenue.