976 resultados para 11Q13 AMPLIFICATION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of this study was to compare the quantity and purity of DNA extracted from biological tracesusing the QIAsymphony robot with that of the manual QIAamp DNA mini kit currently in use in ourlaboratory. We found that the DNA yield of robot was 1.6-3.5 times lower than that of the manualprotocol. This resulted in a loss of 8% and 29% of the alleles correctly scored when analyzing 1/400 and 1/800 diluted saliva samples, respectively. Specific tests showed that the QIAsymphony was at least 2-16times more efficient at removing PCR inhibitors. The higher purity of the DNA may therefore partlycompensate for the lower DNA yield obtained. No case of cross-contamination was observed amongsamples. After purification with the robot, DNA extracts can be automatically transferred in 96-wellsplates, which is an ideal format for subsequent RT-qPCR quantification and DNA amplification. Lesshands-on time and reduced risk of operational errors represent additional advantages of the robotic platform.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Profiling microRNA (miRNA) expression is of widespread interest given the critical role of miRNAs in many cellular functions. Profiling can be achieved via hybridization-based (microarrays), sequencing-based, or amplification-based (quantitative reverse transcription-PCR, qPCR) technologies. Among these, microarrays face the significant challenge of accurately distinguishing between mature and immature miRNA forms, and different vendors have developed different methods to meet this challenge. Here we measure differential miRNA expression using the Affymetrix, Agilent, and Illumina microarray platforms, as well as qPCR (Applied Biosystems) and ultra high-throughput sequencing (Illumina). We show that the differential expression measurements are more divergent when the three types of microarrays are compared than when the Agilent microarray, qPCR, and sequencing technology measurements are compared, which exhibit a good overall concordance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Silver-Russell syndrome (SRS) is a genetically and clinically heterogeneous disease. Although no protein coding gene defects have been reported in SRS patients, approximately 50% of SRS patients carry epimutations (hypomethylation) at the IGF2/H19 imprinting control region 1 (ICR1). Proper methylation at ICR1 is crucial for the imprinted expression of IGF2, a fetal growth factor. CTCFL, a testis-specific protein, has recently been proposed to play a role in the establishment of DNA methylation at the murine equivalent of ICR1. A screen was undertaken to assess whether CTCFL is mutated in SRS patients with hypomethylation, to explore a link between the observed epimutations and a genetic cause of the disease. METHODOLOGY/PRINCIPAL FINDINGS: DNA was obtained from 36 SRS patients with hypomethylation at ICR1. All CTCFL coding exons were sequenced and analyzed for duplications/deletions using both multiplex ligation-dependent probe amplification, with a custom CTCFL probe set, and genomic qPCR. Novel SNP alleles were analyzed for potential differential splicing in vitro utilizing a splicing assay. Neither mutations of CTCFL nor duplications/deletions were observed. Five novel SNPs were identified and have been submitted to dbSNP. In silico splice prediction suggested one novel SNP, IVS2-66A>C, activated a cryptic splice site, resulting in aberrant splicing and premature termination. In vitro splicing assays did not confirm predicted aberrant splicing. CONCLUSIONS/SIGNIFICANCE: As no mutations were detected at CTCFL in the patients examined, we conclude that genetic alterations of CTCFL are not responsible for the SRS hypomethylation. We suggest that analysis of other genes involved in the establishment of DNA methylation at imprinted genes, such as DNMT3A and DNMT3L, may provide insight into the genetic cause of hypomethylation in SRS patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study we tested whether communities of arbuscular mycorrhizal fungi (AMF) colonizing the roots of maize (Zea mays L.) were affected by soil tillage practices (plowing, chiseling, and no-till) in a long-term field experiment carried out in Tanikon (Switzerland). AMF were identified in the roots using specific polymerase chain reaction (PCR) markers that had been developed for the AMF previously isolated from the soils of the studied site. A nested PCR procedure with primers of increased specificity (eukaryotic, then, fungal, then AMF species or. species-grouop specific) was used. Sequencing of amplified DNA confirmed that the DNA obtained from the maize roots was of AMF origin. Presence of particular AMF species or species-group was scored as a presence of a DNA product after PCR with specific primers. We also used single-strand conformation polymorphism analysis (SSCP), of amplified DNA samples to-check if the amplification of the DNA from maize roots matched the expected profile for a particular AMF isolate with a given specific primer pair. Presence of the genus Scutellospora, in maize roots was strongly reduced in plowed and chiseled soils. Fungi from the suborder Glomineae were more prevalent colonizers of maize roots growing in plowed soils, but were also present in the roots from other tillage treatments. These changes in community of AMF colonizing maize roots might be due to (1), the differences in tolerance to the tillage-induced disruption of the hyphae among the different AMF species, (2) changes in nutrient content of the soil, (3) changes in microbial activity, or (4) changes in weed populations in response to soil tillage. This is the first report on community composition of AMF in the roots of a field-grown crop plant (maize) as affected by soil tillage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Telomerase activity has been detected in germ cells as well as in the developing embryo. Activity is no longer detectable in most somatic cells of the neonate, although low levels of activity persist in regenerative tissues. Telomerase has been found to be reactivated or up-regulated in the majority of cancers. The colorectal adenoma-carcinoma sequence is one of the best-characterized models of multistep tumourigenesis and is thus suitable for determining at which stage telomerase is activated. Telomerase activity was examined by telomeric repeat amplification protocol (TRAP) assay in 96 cases of colorectal tissues, including 50 carcinomas, 31 adenomas, and 15 normal colonic tissues. For each case, histological diagnosis and telomerase activity were determined on consecutive frozen sections. In order to reduce the chance of a false-negative TRAP assay due to RNA degradation, the integrity of rRNA in the tissues was verified in each case. Twenty-five carcinomas, 30 adenomas, and all of the 15 normal colorectal mucosal samples showed no or only partial rRNA degradation and only in these cases was the TRAP assay interpreted. None of the normal tissues exhibited telomerase activity. In contrast, all of the 25 cancers and 47 per cent (14/30) of the adenomas were positive. In adenomas, telomerase activation was highly significantly related to the grade of dysplasia (p< 0.0001). All adenomas which contained high-grade dysplasia revealed telomerase activity, whereas telomerase activity was detectable in only 20 per cent (4/20) of cases with exclusively low-grade dysplasia. These results indicate that telomerase activation, which may be an obligatory step in colorectal carcinogenesis, occurs in the progression from low-grade to high-grade dysplasia in adenomas. Furthermore, in the adenoma-carcinoma sequence, telomerase activation seems to occur later than K- ras mutation but earlier than p53 mutation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soil pollution with hexachlorocyclohexane (HCH) has caused serious environmental problems. Here we describe the targeted degradation of all HCH isomers by applying the aerobic bacterium Sphingobium indicum B90A. In particular, we examined possibilities for large-scale cultivation of strain B90A, tested immobilization, storage and inoculation procedures, and determined the survival and HCH-degradation activity of inoculated cells in soil. Optimal growth of strain B90A was achieved in glucose-containing mineral medium and up to 65% culturability could be maintained after 60 days storage at 30 degrees C by mixing cells with sterile dry corncob powder. B90A biomass produced in water supplemented with sugarcane molasses and immobilized on corncob powder retained 15-20% culturability after 30 days storage at 30 degrees C, whereas full culturability was maintained when cells were stored frozen at -20 degrees C. On the contrary, cells stored on corncob degraded gamma-HCH faster than those that had been stored frozen, with between 15 and 85% of gamma-HCH disappearance in microcosms within 20 h at 30 degrees C. Soil microcosm tests at 25 degrees C confirmed complete mineralization of [(14)C]-gamma-HCH by corncob-immobilized strain B90A. Experiments conducted in small pits and at an HCH-contaminated agricultural site resulted in between 85 and 95% HCH degradation by strain B90A applied via corncob, depending on the type of HCH isomer and even at residual HCH concentrations. Up to 20% of the inoculated B90A cells survived under field conditions after 8 days and could be traced among other soil microorganisms by a combination of natural antibiotic resistance properties, unique pigmentation and PCR amplification of the linA genes. Neither the addition of corncob nor of corncob immobilized B90A did measurably change the microbial community structure as determined by T-RFLP analysis. Overall, these results indicate that on-site aerobic bioremediation of HCH exploiting the biodegradation activity of S. indicum B90A cells stored on corncob powder is a promising technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose of reviewMedulloblastomas are very rare in adults. Usual treatment consists of craniospinal radiation with or without chemotherapy. Current efforts focus on a better understanding of tumour biology, stratifying patients into risk groups and adapting treatment accordingly. This review discusses clinical and new molecular risk factors that will help to optimize treatment in adult medulloblastoma patients.Recent findingsThe clinical risk stratification should be complemented with new molecular prognostic markers. Gene-expression profiling has permitted identification of four to six molecular medulloblastoma subgroups. The WNT subgroup shows overexpression of genes of the WNT/wingless signalling pathway with frequent mutations of the CNNTB1 gene, loss of chromosome 6 and accumulation of nuclear beta-catenin, and is most often seen in children with medulloblastomas of classical histology. This variant has a good prognosis. Activation of the sonic hedgehog pathway with frequent mutations of the PTCH and SUFU genes, loss of 9q, and positivity for GLI1 and SFRP1 is more frequent in children less than 3 years old and in adults, commonly associated with desmoplastic histology. Other subgroups are not so well defined and have overlapping characteristics, but MYC/MYCN amplification, 17q gain and, large cell/anaplastic histology are factors of poor prognosis.SummaryNew molecular subgroups will help tailor treatment and further develop new targeted therapies. Prospective and ideally randomized trials should be performed in adults, including risk stratification by molecular markers, to identify optimal treatment for each risk group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary Multicellular organisms have evolved the immune system to protect from pathogen such as viruses, bacteria, fungi or parasites. Detection of invading pathogens by the host innate immune system is crucial for mounting protective responses and depends on the recognition of microbial components by specific receptors. The results presented in this manuscript focus on the signaling pathways involved in the detection of viral infection by the sensing of viral nucleic acids. First, we describe a new regulatory mechanism controlling RNA-sensing antiviral pathways. Our results indicate that TRIF and Cardif, the crucial adaptor proteins for endosomal and cytoplasmic RNA detection signaling pathway, are processed and inactivated by caspases. The second aspect investigated here involves a signaling pathway triggered upon cytosolic DNA sensing. The interferon inducible protein DAI was recently described as a DNA sensor able to induce the activation of IRFs and NF-κΒ transcription factors leading to type I interferon production. Here we identify two RIP homotypic interaction motifs (RHIMs) in DAI and demonstrate that they mediate the recruitment of RIP1 and RIP3 and the subsequent NF-κΒ activation. Moreover, we observed that the mouse cytomegalovirus RHIM- containing protein M45 has the potential to block this signaling cascade by interfering with the formation of the DAI-RIP1/3 signaling complex. Finally, we report the generation and the initial characterization of NLRX1-deficient mice. NLRX1 is a member of the NOD-like receptor family localized to the mitochondria. The function of NLRX1 is still controversial: one study proposed that NLRX1 acts as an inhibitor of the RIG-like receptor (RLR) antiviral pathway by binding the adaptor protein Cardif, whereas another report implicated NLRX1 in the generation of reactive oxygen species (ROS) and the amplification of NF-κΒ and JNK triggered by TNF-α, poly(I:C) or Shigella infection. Collectively, our results indicate that NLRX1-deficiency does not affect RLR signaling nor TNF-α induced responses. Proteomics analysis identified UQCRC2, a subunit of the complex III of the mitochondrial respiratory chain, as a NLRX1 binding partner. This observation might reveal a possible functional link between NLRX1 and mitochondrial respiration and/or ROS generation. Résumé Au cours de l'évolution, les organismes multicellulaires ont développé le système immunitaire afin de se protéger contre les pathogènes. Une étape cruciale pour le déclenchement des réponses protectrices est la reconnaissance par les cellules du système immunitaire de molécules propres aux microbes grâce à des récepteurs spécifiques. Les résultats présentés dans cette thèse décrivent des nouveaux aspects concernant les voies de signalisation impliquées dans la détection des virus. Le premier projet décrit un mécanisme de régulation des voies activées par la détection d'ARN virale. Nos résultats montrent que TRIF et Cardif, des protéines adaptatrices des voies déclenchées par la reconnaissance de ces acides nucléiques au niveau des endosomes et du cytoplasme, sont clivés et inactivés par les caspases. Le projet suivant de notre recherche concerne une voie de signalisation activée par la détection d'ADN au niveau du cytoplasme. La protéine DAI a été récemment décrite comme un senseur pour cet ADN capable d'activer les facteurs de transcription IRF et NF-κΒ et d'induire ainsi la production des interférons de type I. Ici on démontre que DAI interagit avec RIP1 et RIP3 par le biais de domaines appelés RHIM et que ce complexe est responsable de l'activation de NF-κΒ. On a aussi identifié une protéine du cytomégalovirus de la souris, M45, qui contient ce même domaine et on a pu démontrer qu'elle a la capacité d'interférer avec la formation du complexe entre DAI et RIP1/RIP3 bloquant ainsi l'activation de NF-κΒ. Enfin on décrit ici la génération de souris déficientes pour le gène qui code pour la protéine NLRX1. Cette protéine fait partie de la famille des récepteurs NOD et est localisée dans la mitochondrie. Une étude a suggéré que NLRX1 agit comme un inhibiteur des voies antivirales activées par les récepteurs du type RIG-I (RLR) en interagissant avec la protéine adaptatrice Cardif. Une autre étude propose par contre que NLRX1 participe à la production des dérivés réactifs de l'oxygène et contribue ainsi à augmenter l'activation de NF- κΒ et JNK induite par le TNF-α ou le poly(I:C). Nos résultats montrent que l'absence de NLRX1 ne modifie ni la voie de signalisation RLR ni les réponses induites par le TNF-α. Des analyses ultérieures ont permis d'identifier comme partenaire d'interaction de NLRX1 la protéine UQCRC2, une des sous-unités qui composent le complexe III de la chaîne respiratoire mitochondriale. Cette observation pourrait indiquer un lien fonctionnel entre NLRX1 et la respiration mitochondriale ou la production des dérivés réactifs de l'oxygène au niveau de cette organelle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Random amplified polymorphic DNA markers (RAPD) were used to estimate the variability of 14 genotypes of Brazilian wheat (Triticum aestivum L.), using a set of 50 random 10mer primers. A total of 256 reproducibly scorable DNA amplification products were obtained from 48 of the primers, 83% of which were polymorphic. Genetic distances among genotypes were calculated and a dendrogram and a principal coordinates analysis showing the genetic relationships among them were obtained. Despite the low variability found (average genetic distance of 27%), two groups of genotypes could be identified, which probably reflect how they were formed. Studies such as this one may be important in the planning and development of future improvement programs for this plant species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyamines (PAs) are small polycationic compounds present in all living organisms. Compelling evidences indicate a role for PAs in plant protection against stress. During the recent years, genetic, molecular and ‘omic’ approaches have been undertaken to unravel the role of PAs in stress signaling. Overall, results point to intricate relationships between PAs, stress hormone pathways and ROS signaling. Such cross-regulations condition stress signaling through the modulation of abscisic acid (ABA) and ROS amplification-loops. In this chapter we compile our recent findings which elucidate molecular mechanisms and signalingpathways by which PAs contribute to stress protection in plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Superantigens (SAgs) encoded by infectious mouse mammary tumor viruses (MMTVs) play a crucial role in the viral life cycle. Their expression by infected B cells induces a proliferative immune response by SAg-reactive T cells which amplifies MMTV infection. This response most likely ensures stable MMTV infection and transmission to the mammary gland. Since T cell reactivity to SAgs from endogenous Mtv loci depends on MHC class II molecules expressed by B cells, we have determined the ability of MMTV to infect various MHC congenic mice. We show that MHC class II I-E+ compared with I-E- mouse strains show higher levels of MMTV infection, most likely due to their ability to induce a vigorous SAg-dependent immune response following MMTV encounter. Inefficient infection is observed in MHC class II I-E- mice, which have been shown to present endogenous SAgs poorly. Therefore, during MMTV infection the differential ability of MHC class II molecules to form a functional complex with SAg determines the magnitude of the proliferative response of SAg-reactive T cells. This in turn influences the degree of T cell help provided to infected B cells and therefore the efficiency of amplification of MMTV infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Superantigens have been defined in a variety of infectious particles such as bacteria and viruses. These superantigens have the capacity to stimulate a large percentage of the host T cells by interacting specifically with the T-cell receptor V beta chain which is shared by about 1-20% of mature T cells. The recent discovery that mammary tumour viruses express such superantigens enabled the analysis of the retroviral life cycle and led to questions about the role of superantigen in amplification of the infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HER2 gene amplification is observed in about 15% of breast cancers. The subgroup of HER2-positive breast cancers appears to be heterogeneous and presents complex patterns of gene amplification at the locus on chromosome 17q12-21. The molecular variations within the chromosome 17q amplicon and their clinical implications remain largely unknown. Besides the well-known TOP2A gene encoding Topoisomerase IIA, other genes might also be amplified and could play functional roles in breast cancer development and progression. This review will focus on the current knowledge concerning the HER2 amplicon heterogeneity, its clinical and biological impact and the pitfalls associated with the evaluation of gene amplifications at this locus, with particular attention to TOP2A and the link between TOP2A and anthracycline benefit. In addition it will discuss the clinical and biological implications of the amplification of ten other genes at this locus (MED1, STARD3, GRB7, THRA, RARA, IGFPB4, CCR7, KRT20, KRT19 and GAST) in breast cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epigenetic silencing of the DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT) by promoter methylation predicts successful alkylating agent therapy, such as with temozolomide, in glioblastoma patients. Stratified therapy assignment of patients in prospective clinical trials according to tumor MGMT status requires a standardized diagnostic test, suitable for high-throughput analysis of small amounts of formalin-fixed, paraffin-embedded tumor tissue. A direct, real-time methylation-specific PCR (MSP) assay was developed to determine methylation status of the MGMT gene promoter. Assay specificity was obtained by selective amplification of methylated DNA sequences of sodium bisulfite-modified DNA. The copy number of the methylated MGMT promoter, normalized to the beta-actin gene, provides a quantitative test result. We analyzed 134 clinical glioma samples, comparing the new test with the previously validated nested gel-based MSP assay, which yields a binary readout. A cut-off value for the MGMT methylation status was suggested by fitting a bimodal normal mixture model to the real-time results, supporting the hypothesis that there are two distinct populations within the test samples. Comparison of the tests showed high concordance of the results (82/91 [90%]; Cohen's kappa = 0.80; 95% confidence interval, 0.82-0.95). The direct, real-time MSP assay was highly reproducible (Pearson correlation 0.996) and showed valid test results for 93% (125/134) of samples compared with 75% (94/125) for the nested, gel-based MSP assay. This high-throughput test provides an important pharmacogenomic tool for individualized management of alkylating agent chemotherapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The CD44 adhesion receptor is silenced in highly malignant neuroblastomas (NBs) with MYCN amplification. Because its functional expression is associated with decreased tumorigenic properties, CD44 behaves as a tumor suppressor gene in NB and other cancers. Given that the precise mechanisms responsible for CD44 silencing are not elucidated, we investigated whether CD44 expression could be regulated by DNA hypermethylation. The methylation status of CD44 gene promoter and exon 1 regions was analyzed in 12 NB cell lines and 21 clinical samples after bisulfite genomic modification, followed by PCR and single-strand conformation polymorphism analysis and genomic sequencing. The results showed that almost all CD44-negative cell lines displayed hypermethylation in both regions, whereas all CD44-expressing cell lines were unmethylated. These observations correlated with the ability to restore CD44 mRNA and protein expression by treatment of CD44-negative cells with the 5-aza-2'-deoxycytidine demethylating agent. In contrast, no CD44 gene hypermethylation could be detected in 21 NB clinical samples of different stages, irrespective of CD44 expression. Although our results suggest that aberrant methylation of promoter and exon 1 regions is involved in CD44 silencing in NB cell lines, they also indicate that methylation of unidentified regulatory sequences or methylation-independent mechanisms also control the expression of CD44 in primary NB tumors and cell lines. We therefore conclude that CD44 silencing is controlled by complex and tumor cell-specific processes, including gene hypermethylation. Further investigation of other mechanisms and genes involved in CD44 regulation will be needed before demethylation-mediated reactivation of the CD44 gene can be considered as therapeutic strategy for neuroblastoma and perhaps other related cancers.