970 resultados para 110311 Medical Genetics (excl. Cancer Genetics)
Resumo:
Eubacteria of the genus Rhodococcus are a diverse group of microorganisms commonly found in many environmental niches from soils to seawaters and as plant and animal pathogens. They exhibit a remarkable ability to degrade many organic compounds and their economic importance is becoming increasingly apparent. Although their genetic organisation is still far from understood, there have been many advances in recent years. Reviewed here is the current knowledge of rhodococci relating to gene transfer, recombination, plasmid replication and functions, cloning vectors and reporter genes, gene expression and its control, bacteriophages, insertion sequences and genomic rearrangements. Further fundamental studies of Rhodococcus genetics and the application of genetic techniques to the these bacteria will be needed for their continued biotechnological exploitation.
Resumo:
Lipopolysaccharide (LPS), a glycolipid molecule found on the outer leaflet of outer membranes of gram-negative bacteria, consists of three moieties: lipid A, core oligosaccharide, and the O-specific polysaccharide chain. The O-specific side chain, which extends to the extracellular milieu, plays an important role in pathogenicity, especially during the initial stages of infection, because of its ability to interact with serum complement. In recent years, several laboratories have used recombinant DNA tools to determine, at the molecular level, the organization, expression, and regulation of genes involved in LPS biosynthesis in Salmonella and Escherichia coli. An increased understanding of the molecular aspects of the O-specific side-chain genes will shed light on the intimate details related with the formation of the O-specific side chain, its assembly onto the lipid A--core, and the translocation and insertion of the complete LPS molecule into the outer membrane. It will also contribute to the understanding of the evolution of these genes and the correlation of chemical diversity of O-specific side chains with the genetic diversity of O-specific side-chain genes. In addition, since the O-specific side chains are involved in the pathogenicity of medically important gram-negative bacteria, a basic understanding of the regulation and expression of O-specific side chain LPS genes will contribute to the field of molecular pathogenesis. This article provides an overview of the role of O-specific side chains in septicemic infections and also discusses the current status of molecular genetic studies on O-specific side-chain genes from E. coli.
Resumo:
Background: The current study was undertaken to characterize the effect of anti-metabolites on inducing CXCL8 signaling and determining whether the constitutive and/or drug-induced CXCL8 signaling in metastatic prostate cancer (CaP) cells modulates their sensitivity to this class of agent.
Methods: The response of metastatic CaP cells to 5-Fluorouracil (5-FU), Pemetrexed or Tomudex was determined using cell count assays, flow cytometry and PARP cleavage analysis. Quantitative-PCR, ELISA and immunoblots were employed to determine effects of drugs or CXCL8 administration on target gene/protein expression.
Results: Administration of 5-FU but not pemetrexed potentiated CXCL8 secretion and increased CXCR1 and CXCR2 gene expression in metastatic PC3 cells. Consistent with this, the inhibition of CXCL8 signaling using a CXCR2 antagonist, AZ10397767, increased the cytotoxicity of 5-FU by 4-fold (P,0.001), and increased 5-FU-induced apoptosis in PC3 cells (P,0.01). In contrast, while administration of AZ10397767 had no effect on the sensitivity of pemetrexed, the CXCR2 antagonist exerted the greatest effect in increasing the sensitivity of PC3 cells to Tomudex, a directed thymidylate synthase (TS) inhibitor. Subsequent experiments confirmed that administration of recombinant human CXCL8 increased TS expression, a response mediated in part by the CXCR2 receptor. Moreover, siRNA-mediated knockdown of the CXCL8-target gene Bcl-2 increased the sensitivity of PC3 cells to 5-FU.
Conclusions: CXCL8 signaling provides a selective resistance of metastatic prostate cancer cells to specific anti-metabolites by promoting a target-associated resistance, in addition to underpinning an evasion of treatment-induced apoptosis. © 2012 Wilson et al.
Resumo:
We conducted a genome-wide association study of male breast cancer comprising 823 cases and 2,795 controls of European ancestry, with validation in independent sample sets totaling 438 cases and 474 controls. A SNP in RAD51B at 14q24.1 was significantly associated with male breast cancer risk (P = 3.02 × 10(-13); odds ratio (OR) = 1.57). We also refine association at 16q12.1 to a SNP within TOX3 (P = 3.87 × 10(-15); OR = 1.50).
Resumo:
This study investigates age-related shifts in the relative importance of systolic (SBP) and diastolic (DBP) blood pressures as predictors of stroke and whether these relations are influenced by other cardiovascular risk factors. Using 34 European cohorts from the MOnica, Risk, Genetics, Archiving, and Monograph (MORGAM) Project with baseline between 1982 and 1997, 68 551 subjects aged 19 to 78 years, without cardiovascular disease and not receiving antihypertensive treatment, were included. During a mean of 13.2 years of follow-up, stroke incidence was 2.8%. Stroke risk was analyzed using hazard ratios per 10-mm Hg/5-mm Hg increase in SBP/DBP by multivariate-adjusted Cox regressions, including SBP and DBP simultaneously. Because of nonlinearity, DBP was analyzed separately for DBP =71 mm Hg and DBP
Design, recruitment, logistics, and data management of the GEHA (Genetics of Healthy Ageing) project
Resumo:
In 2004, the integrated European project GEHA (Genetics of Healthy Ageing) was initiated with the aim of identifying genes involved in healthy ageing and longevity. The first step in the project was the recruitment of more than 2500 pairs of siblings aged 90 years or more together with one younger control person from 15 areas in 11 European countries through a coordinated and standardised effort. A biological sample, preferably a blood sample, was collected from each participant, and basic physical and cognitive measures were obtained together with information about health, life style, and family composition. From 2004 to 2008 a total of 2535 families comprising 5319 nonagenarian siblings were identified and included in the project. In addition, 2548 younger control persons aged 50-75 years were recruited. A total of 2249 complete trios with blood samples from at least two old siblings and the younger control were formed and are available for genetic analyses (e.g. linkage studies and genome-wide association studies). Mortality follow-up improves the possibility of identifying families with the most extreme longevity phenotypes. With a mean follow-up time of 3.7 years the number of families with all participating siblings aged 95 years or more has increased by a factor of 5 to 750 families compared to when interviews were conducted. Thus, the GEHA project represents a unique source in the search for genes related to healthy ageing and longevity.
Resumo:
Clear evidence exists for heritability of humanlongevity, and much interest is focused on identifying genes associated with longer lives. To identify such longevity alleles, we performed the largest genome-wide linkage scan thus far reported. Linkage analyses included 2118nonagenarian Caucasian sibling pairs that have been enrolled in 15 study centers of 11 European countries as part of the Genetics of Healthy Aging (GEHA) project. In the joint linkage analyses, we observed four regions that show linkage with longevity; chromosome 14q11.2 (LOD = 3.47), chromosome 17q12-q22 (LOD = 2.95), chromosome 19p13.3-p13.11 (LOD = 3.76), and chromosome 19q13.11-q13.32 (LOD = 3.57). To fine map these regions linked to longevity, we performed association analysis using GWAS data in a subgroup of 1228 unrelated nonagenarian and 1907 geographically matched controls. Using a fixed-effect meta-analysis approach, rs4420638 at the TOMM40/ APOE/APOC1 gene locus showed significant association with longevity (P-value = 9.6 × 10). By combined modeling of linkage and association, we showed that association of longevity with APOEe4 and APOEe2 alleles explain the linkage at 19q13.11-q13.32 with P-value = 0.02 and P-value = 1.0 × 10, respectively. In the largest linkage scan thus far performed for human familial longevity, we confirm that the APOE locus is a longevity gene and that additional longevity loci may be identified at 14q11.2, 17q12-q22, and 19p13.3-p13.11. As the latter linkage results are not explained by common variants, we suggest that rare variants play an important role in human familial longevity.
Resumo:
Populations of many freshwater species are becoming increasingly threatened as a result of a wide range of anthropogenically mediated factors. In the present study, we wanted to assess levels and patterns of genetic diversity in Ireland's sole population of the River water crowfoot (Ranunculus fluitans), which is restricted to a 12 km stretch of a single river, to assist the formation of conservation strategies. Analysis using amplified fragment length polymorphism (AFLP) indicated comparable levels of genetic diversity to those exhibited by a more extensive population of the species in England, and revealed no evidence of clonal reproduction. Allele-specific PCR analysis of five nuclear single nucleotide polymorphisms (SNPs) indicated no evidence of hybridization with its more abundant congener Ranunculus penicillatus, despite previous anecdotal reports of the occurrence of hybrids. Although the population currently exhibits healthy levels of genetic diversity and is not at risk of genetic assimilation via hybridization with R. penicillatus, it still remains vulnerable to other factors such as stochastic events and invasive species. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Both advocacy for and critiques of the Human Genome Project assume a self-sustaining relationship between genetics and. medicalization. However, this assumption ignores the ways in which the meanings of genetic research are conditional on its position in sequences of events. Based, on analyses of three conditions for which at least one putative gene or genetic marker has been identified, this article argues that critical junctures in the institutional stabilization of phenotypes and the mechanisms that sustain such classifications over time configure the practices and meanings of genetic research. Path dependence is critical to understanding the lack of consistent fit between genetics and medlcalization.
Resumo:
Science journalists call upon experts for background and for clarification and comment on scientific findings. This paper examines how science writers choose and use experts, and it focuses on several cases of reporting about genetics and behavior. Our research included two sources of data: interviews with 15 science reporters and three print media samples of coverage of genetics and behavior - alcoholism (between 1980-1995), homosexuality (in 1993 and 1995), and mental illness (between 1970-1995). Science reporters seek relevant and specific experts for nearly every story. Good sources are knowledgeable, are connected to prestigious institutions, are direct and articulate and don't overqualify statements, and they return phone calls. The mean number of experts quoted was 2.8 per story, differing for alcoholism (3.5), homosexuality (2.8), and mental illness (2.6). Researchers and scientists predominated among experts quoted. Quotes were used to provide context, give legitimization, as explication, to provide a kind of balance, and to outline implications. For the homosexuality sample, a significantly greater percentage of activists and advocates were quoted (21 percent compared with 5 percent and 1 percent in other samples, X <0.0001). "Lay" quotes for alcoholism and mental illness were minimal. Except for homosexuality, whose advocates are organized, those "affected" do not have a voice in genetics news stories.