945 resultados para vehicle trajectory data
Resumo:
Automobiles have deeply impacted the way in which we travel but they have also contributed to many deaths and injury due to crashes. A number of reasons for these crashes have been pointed out by researchers. Inexperience has been identified as a contributing factor to road crashes. Driver’s driving abilities also play a vital role in judging the road environment and reacting in-time to avoid any possible collision. Therefore driver’s perceptual and motor skills remain the key factors impacting on road safety. Our failure to understand what is really important for learners, in terms of competent driving, is one of the many challenges for building better training programs. Driver training is one of the interventions aimed at decreasing the number of crashes that involve young drivers. Currently, there is a need to develop comprehensive driver evaluation system that benefits from the advances in Driver Assistance Systems. A multidisciplinary approach is necessary to explain how driving abilities evolves with on-road driving experience. To our knowledge, driver assistance systems have never been comprehensively used in a driver training context to assess the safety aspect of driving. The aim and novelty of this thesis is to develop and evaluate an Intelligent Driver Training System (IDTS) as an automated assessment tool that will help drivers and their trainers to comprehensively view complex driving manoeuvres and potentially provide effective feedback by post processing the data recorded during driving. This system is designed to help driver trainers to accurately evaluate driver performance and has the potential to provide valuable feedback to the drivers. Since driving is dependent on fuzzy inputs from the driver (i.e. approximate distance calculation from the other vehicles, approximate assumption of the other vehicle speed), it is necessary that the evaluation system is based on criteria and rules that handles uncertain and fuzzy characteristics of the driving tasks. Therefore, the proposed IDTS utilizes fuzzy set theory for the assessment of driver performance. The proposed research program focuses on integrating the multi-sensory information acquired from the vehicle, driver and environment to assess driving competencies. After information acquisition, the current research focuses on automated segmentation of the selected manoeuvres from the driving scenario. This leads to the creation of a model that determines a “competency” criterion through the driving performance protocol used by driver trainers (i.e. expert knowledge) to assess drivers. This is achieved by comprehensively evaluating and assessing the data stream acquired from multiple in-vehicle sensors using fuzzy rules and classifying the driving manoeuvres (i.e. overtake, lane change, T-crossing and turn) between low and high competency. The fuzzy rules use parameters such as following distance, gaze depth and scan area, distance with respect to lanes and excessive acceleration or braking during the manoeuvres to assess competency. These rules that identify driving competency were initially designed with the help of expert’s knowledge (i.e. driver trainers). In-order to fine tune these rules and the parameters that define these rules, a driving experiment was conducted to identify the empirical differences between novice and experienced drivers. The results from the driving experiment indicated that significant differences existed between novice and experienced driver, in terms of their gaze pattern and duration, speed, stop time at the T-crossing, lane keeping and the time spent in lanes while performing the selected manoeuvres. These differences were used to refine the fuzzy membership functions and rules that govern the assessments of the driving tasks. Next, this research focused on providing an integrated visual assessment interface to both driver trainers and their trainees. By providing a rich set of interactive graphical interfaces, displaying information about the driving tasks, Intelligent Driver Training System (IDTS) visualisation module has the potential to give empirical feedback to its users. Lastly, the validation of the IDTS system’s assessment was conducted by comparing IDTS objective assessments, for the driving experiment, with the subjective assessments of the driver trainers for particular manoeuvres. Results show that not only IDTS was able to match the subjective assessments made by driver trainers during the driving experiment but also identified some additional driving manoeuvres performed in low competency that were not identified by the driver trainers due to increased mental workload of trainers when assessing multiple variables that constitute driving. The validation of IDTS emphasized the need for an automated assessment tool that can segment the manoeuvres from the driving scenario, further investigate the variables within that manoeuvre to determine the manoeuvre’s competency and provide integrated visualisation regarding the manoeuvre to its users (i.e. trainers and trainees). Through analysis and validation it was shown that IDTS is a useful assistance tool for driver trainers to empirically assess and potentially provide feedback regarding the manoeuvres undertaken by the drivers.
Resumo:
QUT Library and the High Performance Computing and Research Support (HPC) Team have been collaborating on developing and delivering a range of research support services, including those designed to assist researchers to manage their data. QUT’s Management of Research Data policy has been available since 2010 and is complemented by the Data Management Guidelines and Checklist. QUT has partnered with the Australian Research Data Service (ANDS) on a number of projects including Seeding the Commons, Metadata Hub (with Griffith University) and the Data Capture program. The HPC Team has also been developing the QUT Research Data Repository based on the Architecta Mediaflux system and have run several pilots with faculties. Library and HPC staff have been trained in the principles of research data management and are providing a range of research data management seminars and workshops for researchers and HDR students.
Resumo:
The Queensland Department of Main Roads uses Weigh-in-Motion (WiM) devices to covertly monitor (at highway speed) axle mass, axle configurations and speed of heavy vehicles on the road network. Such data is critical for the planning and design of the road network. Some of the data appears excessively variable. The current work considers the nature, magnitude and possible causes of WiM data variability. Over fifty possible causes of variation in WiM data have been identified in the literature. Data exploration has highlighted five basic types of variability specifically: ----- • cycling, both diurnal and annual;----- • consistent but unreasonable data;----- • data jumps;----- • variations between data from opposite sides of the one road; and ----- • non-systematic variations.----- This work is part of wider research into procedures to eliminate or mitigate the influence of WiM data variability.
Resumo:
In 2006, the Faculty of Built Environment and Engineering introduced the first faculty wide unit dedicated to sustainability at any Australian University. BEB200 Introducing Sustainability has semester enrolments of up to 1500 students. Instruments such as lectures, readings, field visits, group projects and structured tutorial activities are used and have evolved over the last five years in response to student and staff feedback and attempts to better engage students. More than seventy staff have taught in the unit, which is in its final offering in this form in 2010. This paper reflects on the experiences of five academics who have played key roles in the development and teaching of this unit over the last five years. They argue that sustainability is a paradigm that allows students to explore other ways of knowing as they engage with issues in a complex world, not an end in itself. From the students’ perspective, grappling with such issues enables them to move towards a context in which they can understand their own discipline and its role in the contradictory and rapidly changing professional world. Insights are offered into how sustainability units may be developed in the future.
Resumo:
Illegal street racing has received increased attention in recent years from road safety professionals and the media as jurisdictions in Australia, Canada, and the United States have implemented laws to address the problem, which primarily involves young male drivers. Although some evidence suggests that the prevalence of illegal street racing is increasing, obtaining accurate estimates of the crash risk of this behavior is difficult because of limitations in official data sources. Although crash risk can be explored by examining the proportion of incidents of street racing that result in crashes, or the proportion of all crashes that involve street racing, this paper reports on the findings of a study that explored the riskiness of involved drivers. The driving histories of 183 male drivers with an illegal street racing conviction in Queensland, Australia, were compared with a random sample of 183 male Queensland drivers with the same age distribution. The offender group was found to have significantly more traffic infringements, license sanctions, and crashes than the comparison group. Drivers in the offender group were more likely than the comparison group to have committed infringements related to street racing, such as speeding, "hooning," and offenses related to vehicle defects or illegal modifications. Insufficient statistical capacity prevented full exploration of group differences in the type and nature of earlier crashes. It was concluded, however, that street racing offenders generally can be considered risky drivers who warrant attention and whose risky behavior cannot be explained by their youth alone.
Resumo:
Objective: to assess the accuracy of data linkage across the spectrum of emergency care in the absence of a unique patient identifier, and to use the linked data to examine service delivery outcomes in an emergency department setting. Design: automated data linkage and manual data linkage were compared to determine their relative accuracy. Data were extracted from three separate health information systems: ambulance, ED and hospital inpatients, then linked to provide information about the emergency journey of each patient. The linking was done manually through physical review of records and automatically using a data linking tool (Health Data Integration) developed by the CSIRO. Match rate and quality of the linking were compared. Setting: 10, 835 patient presentations to a large, regional teaching hospital ED over a two month period (August-September 2007). Results: comparison of the manual and automated linkage outcomes for each pair of linked datasets demonstrated a sensitivity of between 95% and 99%; a specificity of between 75% and 99%; and a positive predictive value of between 88% and 95%. Conclusions: Our results indicate that automated linking provides a sound basis for health service analysis, even in the absence of a unique patient identifier. The use of an automated linking tool yields accurate data suitable for planning and service delivery purposes and enables the data to be linked regularly to examine service delivery outcomes.
Resumo:
Dynamic load sharing can be defined as a measure of the ability of a heavy vehicle multi-axle group to equalise load across its wheels under typical travel conditions; i.e. in the dynamic sense at typical travel speeds and operating conditions of that vehicle. Various attempts have been made to quantify the ability of heavy vehicles to equalise the load across their wheels during travel. One of these was the concept of the load sharing coefficient (LSC). Other metrics such as the dynamic load coefficient (DLC), peak dynamic wheel force (PDWF) and dynamic impact force (DIF) have been used to compare one heavy vehicle suspension with another for potential road damage. This paper compares these metrics and determines a relationship between DLC and LSC with sensitivity analysis of this relationship. The shortcomings of the presently-available metrics are discussed with a new metric proposed - the dynamic load equalisation (DLE) measure.
Resumo:
Road accidents are of great concerns for road and transport departments around world, which cause tremendous loss and dangers for public. Reducing accident rates and crash severity are imperative goals that governments, road and transport authorities, and researchers are aimed to achieve. In Australia, road crash trauma costs the nation A$ 15 billion annually. Five people are killed, and 550 are injured every day. Each fatality costs the taxpayer A$1.7 million. Serious injury cases can cost the taxpayer many times the cost of a fatality. Crashes are in general uncontrolled events and are dependent on a number of interrelated factors such as driver behaviour, traffic conditions, travel speed, road geometry and condition, and vehicle characteristics (e.g. tyre type pressure and condition, and suspension type and condition). Skid resistance is considered one of the most important surface characteristics as it has a direct impact on traffic safety. Attempts have been made worldwide to study the relationship between skid resistance and road crashes. Most of these studies used the statistical regression and correlation methods in analysing the relationships between skid resistance and road crashes. The outcomes from these studies provided mix results and not conclusive. The objective of this paper is to present a probability-based method of an ongoing study in identifying the relationship between skid resistance and road crashes. Historical skid resistance and crash data of a road network located in the tropical east coast of Queensland were analysed using the probability-based method. Analysis methodology and results of the relationships between skid resistance, road characteristics and crashes are presented.
Resumo:
Issue addressed: Measures of 'social identity' and 'psychological sense of community' were included within a broader formative research inquiry to gain insight into the identity characteristics and level of connectedness among older recreational road travellers (commonly known as Grey Nomads). The research sought to gain insights on how best to reach or speak to this growing driver cohort. ----- ----- Method: Participants included 631 older recreational road travellers ranging in age from 50 years to over 80 years. Data were obtained through three scales which were incorporated into a larger formative research survey; an identity hierarchy, the Three Factor Model of Social Identity and the Sense of Community Index. ----- ----- Results: Older recreational road travellers see themselves principally as couples, with social group identity being secondary. Although many identified to some degree with the Grey Nomad identity, when asked to self categorise as either members of the Broad Network of Recreational Vehicle Travellers or as Grey Nomads, the majority categorised themselves as the former. Those identifying as Grey Nomads, however, reported significantly higher levels of 'social identification' and 'sense of community'. ----- ----- Conclusion: The Grey Nomad identity may not be the best identity at which to target road safety messages for this cohort. Targeting travelling 'couples' may be more efficacious. Using the 'Grey Nomad' identity is likely to reap at least some success, however, given that many identified to some degree with this group identity. Those identifying as Grey Nomads may be more open to community participation or behaviour change given their significantly higher levels of 'social identity' and 'sense of community'.
Resumo:
Road safety is a major concern worldwide. Road safety will improve as road conditions and their effects on crashes are continually investigated. This paper proposes to use the capability of data mining to include the greater set of road variables for all available crashes with skid resistance values across the Queensland state main road network in order to understand the relationships among crash, traffic and road variables. This paper presents a data mining based methodology for the road asset management data to find out the various road properties that contribute unduly to crashes. The models demonstrate high levels of accuracy in predicting crashes in roads when various road properties are included. This paper presents the findings of these models to show the relationships among skid resistance, crashes, crash characteristics and other road characteristics such as seal type, seal age, road type, texture depth, lane count, pavement width, rutting, speed limit, traffic rates intersections, traffic signage and road design and so on.
Resumo:
Developing safe and sustainable road systems is a common goal in all countries. Applications to assist with road asset management and crash minimization are sought universally. This paper presents a data mining methodology using decision trees for modeling the crash proneness of road segments using available road and crash attributes. The models quantify the concept of crash proneness and demonstrate that road segments with only a few crashes have more in common with non-crash roads than roads with higher crash counts. This paper also examines ways of dealing with highly unbalanced data sets encountered in the study.
Resumo:
It is commonly accepted that wet roads have higher risk of crash than dry roads; however, providing evidence to support this assumption presents some difficulty. This paper presents a data mining case study in which predictive data mining is applied to model the skid resistance and crash relationship to search for discernable differences in the probability of wet and dry road segments having crashes based on skid resistance. The models identify an increased probability of wet road segments having crashes for mid-range skid resistance values.
Resumo:
The Comprehensive Australian Study of Entrepreneurial Emergence (CAUSEE) is a research programme that aims to uncover the factors that initiate, hinder and facilitate the process of emergence of new economic activities and organizations. It is widely acknowledged that entrepreneurship is one of the most important forces shaping changes in a country’s economic landscape (Baumol 1968; Birch 1987; Acs 1999). An understanding of the process by which new economic activity and business entities emerge is vital (Gartner 1993; Sarasvathy 2001). An important development in the study of ‘nascent entrepreneurs’ and ‘firms in gestation’ was the Panel Study of Entrepreneurial Dynamics (PSED) (Gartner et al. 2004) and its extensions in Argentina, Canada, Greece, the Netherlands, Norway and Sweden. Yet while PSED I is an important first step towards systematically studying new venture emergence, it represents just the beginning of a stream of nascent venture studies – most notably PSED II is currently being undertaken in the US (2005– 10) (Reynolds and Curtin 2008).
Resumo:
Road crashes cost world and Australian society a significant proportion of GDP, affecting productivity and causing significant suffering for communities and individuals. This paper presents a case study that generates data mining models that contribute to understanding of road crashes by allowing examination of the role of skid resistance (F60) and other road attributes in road crashes. Predictive data mining algorithms, primarily regression trees, were used to produce road segment crash count models from the road and traffic attributes of crash scenarios. The rules derived from the regression trees provide evidence of the significance of road attributes in contributing to crash, with a focus on the evaluation of skid resistance.
Resumo:
This paper describes the characterisation for airborne uses of the public mobile data communication systems known broadly as 3G. The motivation for this study was to explore how this mature public communication systems could be used for aviation purposes. An experimental system was fitted to a light aircraft to record communication latency, line speed, RF level, packet loss and cell tower identifier. Communications was established using internet protocols and connection was made to a local server. The aircraft was flown in both remote and populous areas at altitudes up to 8500ft in a region located in South East Queensland, Australia. Results show that the average airborne RF levels are better than those on the ground by 21% and in the order of -77 dbm. Latencies were in the order of 500 ms (1/2 the latency of Iridium), an average download speed of 0.48 Mb/s, average uplink speed of 0.85 Mb/s, a packet of information loss of 6.5%. The maximum communication range was also observed to be 70km from a single cell station. The paper also describes possible limitations and utility of using such a communications architecture for both manned and unmanned aircraft systems.