973 resultados para template
Resumo:
Tese de doutoramento, Farmácia (Química Farmacêutica e Terapêutica), Universidade de Lisboa, Faculdade de Farmácia, 2014
Resumo:
Tese de doutoramento, Medicina (Medicina Interna), Universidade de Lisboa, Faculdade de Medicina, 2014
Resumo:
Thesis (Ph.D.)--University of Washington, 2013
Resumo:
PURPOSE: To examine risk-taking and risk-perception associations with perceived exertion, pacing and performance in athletes. METHODS: Two experiments were conducted in which risk-perception was assessed using the domain-specific risk-taking (DOSPERT) scale in 20 novice cyclists (Experiment 1) and 32 experienced ultra-marathon runners (Experiment 2). In Experiment 1, participants predicted their pace and then performed a 5 km maximum effort cycling time-trial on a calibrated KingCycle mounted bicycle. Split-times and perceived exertion were recorded every kilometer. In experiment 2, each participant predicted their split times before running a 100 km ultra-marathon. Split-times and perceived exertion were recorded at 7 check-points. In both experiments, higher and lower risk-perception groups were created using median split of DOSPERT scores. RESULTS: In experiment 1, pace during the first km was faster among lower compared to higher risk-perceivers, t(18)=2.0 P=0.03, and faster among higher compared lower risk-takers, t(18)=2.2 P=0.02. Actual pace was slower than predicted pace during the first km in both the higher risk perceivers, t(9)=-4.2 P=0.001, and lower risk-perceivers, t(9)=-1.8 P=0.049. In experiment 2, pace during the first 36 km was faster among lower compared to higher risk-perceivers, t(16)=2.0 P=0.03. Irrespective of risk-perception group, actual pace was slower than predicted pace during the first 18 km, t(16)=8.9 P<0.001, and from 18 to 36 km, t(16)=4.0 P<0.001. In both experiments there was no difference in performance between higher and lower risk-perception groups. CONCLUSIONS: Initial pace is associated with an individual's perception of risk, with low perceptions of risk being associated with a faster starting pace. Large differences between predicted and actual pace suggests the performance template lacks accuracy, perhaps indicating greater reliance on momentary pacing decisions rather than pre-planned strategy.
Where and how to find data on safety: what do systematic reviews of complementary therapies tell us?
Resumo:
Background: Successfully identifying relevant data for systematic reviews with a focus on safety may require retrieving information from a wider range of sources than for ‘effectiveness’ systematic reviews. Searching for safety data continues to prove a major challenge. Objectives: To examine search methods used in systematic reviews of safety and to investigate indexing. Methods: Systematic reviews focusing on safety of complementary therapies and related interventions were retrieved from comprehensive searches of major databases. Data was extracted on search strategies, sources used and indexing in major databases. Safety related search terms were compared against index terms available on major databases. Data extraction by one researcher using a pre-prepared template was checked for accuracy by a second researcher. Results: Screening of 2563 records resulted in 88 systematic reviews being identified. Information sources used varied with the type of intervention being addressed. Comparison of search terms with available index terms revealed additional potentially relevant terms that could be used in constructing search strategies. Seventy-nine reviews were indexed on PubMed, 84 on EMBASE, 21 on CINAHL, 15 on AMED, 6 on PsycINFO, 2 on BNI and HMIC. The mean number of generic safety-related indexing terms on PubMed records was 2.6. For EMBASE the mean number was 4.8 with at least 61 unique terms being employed. Most frequently used indexing terms and subheadings were adverse effects, side effects, drug interactions and herb-drug interactions. Use of terms specifically referring to safety varied across databases. Conclusions: Investigation of search methods revealed the range of information sources used, a list of which may prove a valuable resource for those planning to conduct systematic reviews of safety. The findings also indicated that there is potential to improve safety-related search strategies. Finally, an insight is provided into indexing of and most effective terms for finding safety studies on major databases.
Resumo:
The synthesis of cDNA from RNA is challenging due to the inefficiency of reverse transcription (RT). In order to address this, a method was developed known as RT-Bst for sequential RT of RNA and Bst DNA polymerase amplification for enrichment of cDNA in a single tube reaction. Using genomic RNA from bacteriophage MS2, the yield of cDNA produced by RT alone and RT-Bst were compared by analysis of PCR-amplified products. Using random primers a superior performance was observed when amplifying MS2 RNA following RT-Bst compared to RT alone, indicating that greater quantities of cDNA were present after RT-Bst. RT-Bst was also compared with RT alone for their relative ability to produce sufficient cDNA to amplify 8 target regions spanning the respiratory syncytial virus (RSV) genome. Six out of 8 targets were amplified consistently by PCR subsequent to RT-Bst amplification whereas only 3 out of 8 targets could be amplified after RT alone. RSV sequences were selectively amplified using RSV specific primers from a mixed template containing an excess of MS2 RNA in a RT-Bst reaction without amplifying MS2 sequences. This suggests that RT-Bst can be used to amplify RNA sequences non-specifically using random primers and specifically using sequence specific primers and enhances the yield of cDNA when compared to RT alone.
Resumo:
A novel molecularly imprinted optosensing material based on multi-walled carbon nanotube-quantum dots (MWCNT-QDs) has been designed and synthesized for its high selectivity, sensitivity and specificity in the recognition of a target protein bovine serum albumin (BSA). Molecularly imprinted polymer coated MWCNT-QDs using BSA as the template (BMIP-coated MWCNT-QDs) exhibits a fast mass-transfer speed with a response time of 25 min. It is found that the BSA as a target protein can significantly quench the luminescence of BMIP-coated MWCNT-QDs in a concentration-dependent manner that is best described by a Stem-Volmer equation. The K-SV for BSA is much higher than bovine hemoglobin and lysozyme, implying a highly selective recognition of the BMIP-coated MWCNT-QDs to BSA. Under optimal conditions, the relative fluorescence intensity of BMIP-coated MWCNT-QDs decreases linearly with the increasing target protein BSA in the concentration range of 5.0 x 10(-7)-35.0 x 10(-7) M with a detection limit of 80 nM.
Resumo:
The relentless discovery of cancer biomarkers demands improved methods for their detection. In this work, we developed protein imprinted polymer on three-dimensional gold nanoelectrode ensemble (GNEE) to detect epithelial ovarian cancer antigen-125 (CA 125), a protein biomarker associated with ovarian cancer. CA 125 is the standard tumor marker used to follow women during or after treatment for epithelial ovarian cancer. The template protein CA 125 was initially incorporated into the thin-film coating and, upon extraction of protein from the accessible surfaces on the thin film, imprints for CA 125 were formed. The fabrication and analysis of the CA 125 imprinted GNEE was done by using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) techniques. The surfaces of the very thin, protein imprinted sites on GNEE are utilized for immunospecific capture of CA 125 molecules, and the mass of bound on the electrode surface can be detected as a reduction in the faradic current from the redox marker. Under optimal conditions, the developed sensor showed good increments at the studied concentration range of 0.5–400 U mL−1. The lowest detection limit was found to be 0.5 U mL−1. Spiked human blood serum and unknown real serum samples were analyzed. The presence of non-specific proteins in the serum did not significantly affect the sensitivity of our assay. Molecular imprinting using synthetic polymers and nanomaterials provides an alternative approach to the trace detection of biomarker proteins.
Resumo:
O presente trabalho visa propor uma estratégia para a construção e lançamento de um novo modelo de negócio para a atuação das Relações Públicas em Portugal, numa proposta direcionada para as micro e pequenas empresas. Entre o serviço in house e a consultadoria clássica existe um espaço não coberto em Portugal: um serviço in house partilhado. Apresenta-se aqui este projeto de serviço de Relações Públicas para aqueles para quem é incomportável assumir nos seus quadros um Técnico de Comunicação.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Informática e Computadores
Resumo:
Dissertação apresentada à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Supervisão em Educação
Resumo:
This work shows that the synthesis of protein plastic antibodies tailored with selected charged monomersaround the binding site enhances protein binding. These charged receptor sites are placed over a neutralpolymeric matrix, thus inducing a suitable orientation the protein reception to its site. This is confirmed bypreparing control materials with neutral monomers and also with non-imprinted template. This concepthas been applied here to Prostate Specific Antigen (PSA), the protein of choice for screening prostate can-cer throughout the population, with serum levels >10 ng/mL pointing out a high probability of associatedcancer.Protein Imprinted Materials with charged binding sites (C/PIM) have been produced by surfaceimprinting over graphene layers to which the protein was first covalently attached. Vinylben-zyl(trimethylammonium chloride) and vinyl benzoate were introduced as charged monomers labellingthe binding site and were allowed to self-organize around the protein. The subsequent polymerizationwas made by radical polymerization of vinylbenzene. Neutral PIM (N/PIM) prepared without orientedcharges and non imprinted materials (NIM) obtained without template were used as controls.These materials were used to develop simple and inexpensive potentiometric sensor for PSA. Theywere included as ionophores in plasticized PVC membranes, and tested over electrodes of solid or liq-uid conductive contacts, made of conductive carbon over a syringe or of inner reference solution overmicropipette tips. The electrodes with charged monomers showed a more stable and sensitive response,with an average slope of -44.2 mV/decade and a detection limit of 5.8 × 10−11mol/L (2 ng/mL). The cor-responding non-imprinted sensors showed lower sensitivity, with average slopes of -24.8 mV/decade.The best sensors were successfully applied to the analysis of serum, with recoveries ranging from 96.9to 106.1% and relative errors of 6.8%.
Resumo:
Carnitine (CRT) is a biological metabolite found in urine that contributes in assessingseveral disease conditions, including cancer. Novel quick screening procedures for CRT are therefore fundamental. This work proposes a novel potentiometric device where molecularly imprinted polymers (MIPs) were used as ionophores. The host-tailored sites were imprinted on a polymeric network assembled by radical polymerization of methacrylic acid (MAA) and trimethylpropane trimethacrylate (TRIM). Non-imprinted polymers (NIPs) were produced as control by removing the template from the reaction media. The selective membrane was prepared by dispersing MIP or NIP particles in plasticizer and poly(vinyl chloride), PVC, and casting this mixture over a solid contact support made of graphite. The composition of the selective membrane was investigated with regard to kind/amount of sensory material (MIP or NIP), and the need for a lipophilic additive. Overall, MIP sensors with additive exhibited the best performance, with near-Nernstian response down to ~ 1 × 10− 4 mol L− 1, at pH 5, and a detection limitof ~ 8 × 10− 5 mol L− 1. Suitable selectivity was found for all membranes, assessed by the matched potential method against some of the most common species in urine (urea, sodium, creatinine, sulfate, fructose and hemoglobin). CRT selective membranes including MIP materials were applied successfully to the potentiometric determination of CRT in urine samples.
Resumo:
A low-cost disposable was developed for rapid detection of the protein biomarker myoglobin (Myo) as a model analyte. A screen printed electrode was modified with a molecularly imprinted material grafted on a graphite support and incorporated in a matrix composed of poly(vinyl chloride) and the plasticizer o-nitrophenyloctyl ether. The protein-imprinted material (PIM) was produced by growing a reticulated polymer around a protein template. This is followed by radical polymerization of 4-styrenesulfonic acid, 2-aminoethyl methacrylate hydrochloride, and ethylene glycol dimethacrylate. The polymeric layer was then covalently bound to the graphitic support, and Myo was added during the imprinting stage to act as a template. Non-imprinted control materials (CM) were also prepared by omitting the Myo template. Morphological and structural analysis of PIM and CM by FTIR, Raman, and SEM/EDC microscopies confirmed the modification of the graphite support. The analytical performance of the SPE was assessed by square wave voltammetry. The average limit of detection is 0.79 μg of Myo per mL, and the slope is −0.193 ± 0.006 μA per decade. The SPE-CM cannot detect such low levels of Myo but gives a linear response at above 7.2 μg · mL−1, with a slope of −0.719 ± 0.02 μA per decade. Interference studies with hemoglobin, bovine serum albumin, creatinine, and sodium chloride demonstrated good selectivity for Myo. The method was successfully applied to the determination of Myo urine and is conceived to be a promising tool for screening Myo in point-of-care patients with ischemia.
Resumo:
This work describes a novel use for the polymeric film, poly(o-aminophenol) (PAP) that was made responsive to a specific protein. This was achieved through templated electropolymerization of aminophenol (AP) in the presence of protein. The procedure involved adsorbing protein on the electrode surface and thereafter electroploymerizing the aminophenol. Proteins embedded at the outer surface of the polymeric film were digested by proteinase K and then washed away thereby creating vacant sites. The capacity of the template film to specifically rebind protein was tested with myoglobin (Myo), a cardiac biomarker for ischemia. The films acted as biomimetic artificial antibodies and were produced on a gold (Au) screen printed electrode (SPE), as a step towards disposable sensors to enable point-of-care applications. Raman spectroscopy was used to follow the surface modification of the Au-SPE. The ability of the material to rebind Myo was measured by electrochemical techniques, namely electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV). The devices displayed linear responses to Myo in EIS and SWV assays down to 4.0 and 3.5 μg/mL, respectively, with detection limits of 1.5 and 0.8 μg/mL. Good selectivity was observed in the presence of troponin T (TnT) and creatine kinase (CKMB) in SWV assays, and accurate results were obtained in applications to spiked serum. The sensor described in this work is a potential tool for screening Myo in point-of-care due to the simplicity of fabrication, disposability, short time response, low cost, good sensitivity and selectivity.