907 resultados para rank regression
Resumo:
The RANK / RANKL / OPG sy stem plays an important role in bone formation and resorption . This finding has been regarded as one of the m ost important advances in the understanding of bone biology with respect to osteoclastogenesis. The aim of this study was to investigate the expression of RANKL / RANK / OPG markers in reimplanted t eeth of rats, and to observe the relationship between the expression of these markers and to oth and bone resorption. Thirty male Wistar rats (Rattus norvegicus albinos) had their maxillary right incisors extrac ted , and were divided into 2 groups according to the period that the extracted teeth were kept in dry air before reimplantation : G1 (n = 15) - 5 minutes , and G2 (n = 15) - 60 minutes . After reimplantation, teeth were analyzed at intervals of 1, 3 and 7 da ys. After these experimental periods, the animals were euthanized. Longitudinal sections with 5μm thick were obtained and stained with Hematoxylin and Eosin for histological analysis , while 3μm thick sections were subjected to immunohistochemical analysis of OPG , RANK and RANKL. The results showed that the RANK / RANKL / OPG system actively participates in both the repair process, as well as tooth and bone resorption . Extr a - alveolar time of 60 minutes before replantation caused minor expressions of RANKL a nd OPG, not influencing the expression of RANK; RANKL immunostaining showed higher in both groups when compared to other biomarkers, participating in all phases of bone and tooth resorption; RANKL was associated to both osteoclastogenesis and c ell ular proliferation , and was expressed in both groups.
Resumo:
We experimentally demonstrate 7-dB reduction of nonlinearity penalty in 40-Gb/s CO-OFDM at 2000-km using support vector machine regression-based equalization. Simulation in WDM-CO-OFDM shows up to 12-dB enhancement in Q-factor compared to linear equalization.
Resumo:
Background: Mental health, specifically depression, is a burden of disease in Pakistan. Religion and depression have not been studied in Pakistan currently, specially within a subset of a rural population. Methods: A secondary-data analysis was conducted using logistic regression for a non-parametrically distributed data set. The setting was in rural Pakistan, near Rawalpindi, and the sample size data was collected from the SHARE (South Asian Hub for Advocacy, Research, and Education). The measures used were the phq9 scaled for depression, prayer number, mother’s education, mother’s age, and if the mothers work. Results: This study demonstrated that there was no association between prayer and depression in this cohort. The mean prayer number between depressed and non-depressed women was 1.22 and 1.42, respectively, and a Wilcoxan rank sum test indicated that this was not significant. Conclusions: The primary finding indicates that increased frequency of prayer is not associated with a decreased rate of depression. This may be due to prayer number not being a significant enough measure. The implications of these findings stress the need for more depression intervention in rural Pakistan.
Resumo:
Fitting statistical models is computationally challenging when the sample size or the dimension of the dataset is huge. An attractive approach for down-scaling the problem size is to first partition the dataset into subsets and then fit using distributed algorithms. The dataset can be partitioned either horizontally (in the sample space) or vertically (in the feature space), and the challenge arise in defining an algorithm with low communication, theoretical guarantees and excellent practical performance in general settings. For sample space partitioning, I propose a MEdian Selection Subset AGgregation Estimator ({\em message}) algorithm for solving these issues. The algorithm applies feature selection in parallel for each subset using regularized regression or Bayesian variable selection method, calculates the `median' feature inclusion index, estimates coefficients for the selected features in parallel for each subset, and then averages these estimates. The algorithm is simple, involves very minimal communication, scales efficiently in sample size, and has theoretical guarantees. I provide extensive experiments to show excellent performance in feature selection, estimation, prediction, and computation time relative to usual competitors.
While sample space partitioning is useful in handling datasets with large sample size, feature space partitioning is more effective when the data dimension is high. Existing methods for partitioning features, however, are either vulnerable to high correlations or inefficient in reducing the model dimension. In the thesis, I propose a new embarrassingly parallel framework named {\em DECO} for distributed variable selection and parameter estimation. In {\em DECO}, variables are first partitioned and allocated to m distributed workers. The decorrelated subset data within each worker are then fitted via any algorithm designed for high-dimensional problems. We show that by incorporating the decorrelation step, DECO can achieve consistent variable selection and parameter estimation on each subset with (almost) no assumptions. In addition, the convergence rate is nearly minimax optimal for both sparse and weakly sparse models and does NOT depend on the partition number m. Extensive numerical experiments are provided to illustrate the performance of the new framework.
For datasets with both large sample sizes and high dimensionality, I propose a new "divided-and-conquer" framework {\em DEME} (DECO-message) by leveraging both the {\em DECO} and the {\em message} algorithm. The new framework first partitions the dataset in the sample space into row cubes using {\em message} and then partition the feature space of the cubes using {\em DECO}. This procedure is equivalent to partitioning the original data matrix into multiple small blocks, each with a feasible size that can be stored and fitted in a computer in parallel. The results are then synthezied via the {\em DECO} and {\em message} algorithm in a reverse order to produce the final output. The whole framework is extremely scalable.
Resumo:
Quantile regression (QR) was first introduced by Roger Koenker and Gilbert Bassett in 1978. It is robust to outliers which affect least squares estimator on a large scale in linear regression. Instead of modeling mean of the response, QR provides an alternative way to model the relationship between quantiles of the response and covariates. Therefore, QR can be widely used to solve problems in econometrics, environmental sciences and health sciences. Sample size is an important factor in the planning stage of experimental design and observational studies. In ordinary linear regression, sample size may be determined based on either precision analysis or power analysis with closed form formulas. There are also methods that calculate sample size based on precision analysis for QR like C.Jennen-Steinmetz and S.Wellek (2005). A method to estimate sample size for QR based on power analysis was proposed by Shao and Wang (2009). In this paper, a new method is proposed to calculate sample size based on power analysis under hypothesis test of covariate effects. Even though error distribution assumption is not necessary for QR analysis itself, researchers have to make assumptions of error distribution and covariate structure in the planning stage of a study to obtain a reasonable estimate of sample size. In this project, both parametric and nonparametric methods are provided to estimate error distribution. Since the method proposed can be implemented in R, user is able to choose either parametric distribution or nonparametric kernel density estimation for error distribution. User also needs to specify the covariate structure and effect size to carry out sample size and power calculation. The performance of the method proposed is further evaluated using numerical simulation. The results suggest that the sample sizes obtained from our method provide empirical powers that are closed to the nominal power level, for example, 80%.
Characterising granuloma regression and liver recovery in a murine model of schistosomiasis japonica
Resumo:
For hepatic schistosomiasis the egg-induced granulomatous response and the development of extensive fibrosis are the main pathologies. We used a Schistosoma japonicum-infected mouse model to characterise the multi-cellular pathways associated with the recovery from hepatic fibrosis following clearance of the infection with the anti-schistosomal drug, praziquantel. In the recovering liver splenomegaly, granuloma density and liver fibrosis were all reduced. Inflammatory cell infiltration into the liver was evident, and the numbers of neutrophils, eosinophils and macrophages were significantly decreased. Transcriptomic analysis revealed the up-regulation of fatty acid metabolism genes and the identification of Peroxisome proliferator activated receptor alpha as the upstream regulator of liver recovery. The aryl hydrocarbon receptor signalling pathway which regulates xenobiotic metabolism was also differentially up-regulated. These findings provide a better understanding of the mechanisms associated with the regression of hepatic schistosomiasis.
Resumo:
A search query, being a very concise grounding of user intent, could potentially have many possible interpretations. Search engines hedge their bets by diversifying top results to cover multiple such possibilities so that the user is likely to be satisfied, whatever be her intended interpretation. Diversified Query Expansion is the problem of diversifying query expansion suggestions, so that the user can specialize the query to better suit her intent, even before perusing search results. We propose a method, Select-Link-Rank, that exploits semantic information from Wikipedia to generate diversified query expansions. SLR does collective processing of terms and Wikipedia entities in an integrated framework, simultaneously diversifying query expansions and entity recommendations. SLR starts with selecting informative terms from search results of the initial query, links them to Wikipedia entities, performs a diversity-conscious entity scoring and transfers such scoring to the term space to arrive at query expansion suggestions. Through an extensive empirical analysis and user study, we show that our method outperforms the state-of-the-art diversified query expansion and diversified entity recommendation techniques.
Resumo:
This paper studies the energy efficiency (EE) of a point-to-point rank-1 Ricean fading multiple-input-multiple-output (MIMO) channel. In particular, a tight lower bound and an asymptotic approximation for the EE of the considered MIMO system are presented, under the assumption that the channel is unknown at the transmitter and perfectly known at the receiver. Moreover, the effects of different system parameters, namely, transmit power, spectral efficiency (SE), and number of transmit and receive antennas, on the EE are analytically investigated. An important observation is that, in the high signal-to-noise ratio regime and with the other system parameters fixed, the optimal transmit power that maximizes the EE increases as the Ricean-K factor increases. On the contrary, the optimal SE and the optimal number of transmit antennas decrease as K increases.
Resumo:
Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, Dissertation, 2016
Resumo:
This paper discusses areas for future research opportunities by addressing accounting issues faced by management accountants practicing in hospitality organizations. Specifically, the article focuses on the use of the uniform system of accounts by operating properties, the usefulness of allocating support costs to operated departments, extending our understanding of operating costs and performance measurement systems and the certification of practicing accountants.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08