944 resultados para projections


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Circadian rhythms generated by the suprachiasmatic nucleus (SCN) are modulated by photic and non-photic stimuli. In rodents, direct photic stimuli reach the SCN mainly through the retinohypothalamic tract (RHT), whereas indirect photic stimuli are mainly conveyed by the geniculohypothalamic tract (GHT). In rodents, retinal cells form a pathway that reaches the intergeniculate leaflet (IGL) where they establish synapses with neurons that express neuropeptide Y (NPY), hence forming the GHT projecting to the SCN. In contrast to the RHT, which has been well described in primates, data regarding the presence or absence of the IGL and GHT in primates are contradictory. Some studies have suggested that an area of the pregeniculate nucleus (PGN) of primates might be homologous to the IGL of rodents, but additional anatomical and functional studies on primate species are necessary to confirm this hypothesis. Therefore, this study investigated the main histochemical characteristics of the PGN and the possible existence of the GHT in the SCN of the primate Cebus, comparing the distribution of NPY immunoreactivity, serotonin (5-HT) immunoreactivity and retinal terminal fibers in these two structures. The results show that a collection of cell bodies containing NPY and serotonergic immunoreactivity and retinal innervations are present within a zone that might be homologous to the IGL of rodents. The SCN also receives dense retinal innervations and we observed an atypical distribution of NPY- and 5-HT-immunoreactive fibers without regionalization in the ventral part of the nucleus as described for other species. These data may reflect morphological differences in the structures involved in the regulation of circadian rhythms among species and support the hypothesis that the GHT is present in some higher primates (diurnal animals). (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditional retinal projections target three functionally complementary systems it) the brain of mammals: the primary visual system, the visuomotor integration systems and the circadian timing system. In recent years, studies in several animals have been conducted to investigate the retinal projections to these three systems, despite some evidence of additional targets. The aim of this study was to disclose a previously unknown connection between the retina and the parabrachial complex of the common marmoset, by means of the intraocular injection of cholera toxin Subunit b. A few labeled retinal fibers/terminals that are detected in the medial parabrachial portion of the marmoset brain show clear varicosities, Suggesting terminal fields. Although the possible role of these projections remains unknown, they may provide a modulation of the cholinergic parabrachial neurons which project to the thalamic dorsal lateral geniculate nucleus. (c) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study we provide a comprehensive analysis of the hypothalamic activation pattern during exposure to a live predator or an environment previously associated with a predator. Our results support the view that hypothalamic processing of the actual and the contextual predatory threats share the same circuit, in which the dorsal premammillary nucleus (PMd) plays a pivotal role in amplifying this processing. To further understand the role of the PMd in the circuit organizing antipredatory defensive behaviors, we studied rats with cytotoxic PMd lesions during cat exposure and examined the pattern of behavioral responses as well as how PMd lesions affect the neuronal activation of the systems engaged in predator detection, in contextual memory formation and in defensive behavioral responses. Next, we investigated how pharmacological blockade of the PMd interferes with the conditioned behavioral responses to a context previously associated with a predator, and how this blockade affects the activation pattern of periaqueductal gray (PAG) sites likely to organize the conditioned behavioral responses to the predatory context. Behavioral observations indicate that the PMd interferes with both unconditioned and conditioned antipredatory defensive behavior. Moreover, we have shown that the PMd influences the activation of its major projecting targets, i.e. the ventral part of the anteromedial thalamic nucleus which is likely to influence mnemonic processing, and PAG sites involved in the expression of antipredatory unconditioned and conditioned behavioral responses. Of particular relevance, this work provides evidence to elucidate the basic organization of the neural circuits integrating unconditioned and contextual conditioned responses to predatory threats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hypothalamic suprachiasmatic nucleus (SCN) and the thalamic intergeniculate leaflet (IGL) are considered to be the main centers of the mammalian circadian timing system. In primates, the IGL is included as part of the pregeniculate nucleus (PGN), a cell group located mediodorsally to the dorsal lateral geniculate nucleus. This work was carried out to comparatively evaluate the immunohistochemical expression of the calcium-binding proteins calbindin D-28k (CB), parvalbumin (PV), and calretinin (CR) into the circadian brain districts of the common marmoset and the rock cavy. In both species, although no fibers, terminals or perikarya showed PV-immunoreaction (IR) into the SCN, CB-IR perikarya labeling was detected throughout the SCN rostrocaudal extent, Seeming to delimit its cytoarchitectonic borders. CR-IR perikarya and neuropil were noticed into the ventral and dorsal portions of the SCN, lacking immunoreactivity in the central core of the marmoset and filling the entire nucleus in the rockcavy. The PGN of the marmoset presented a significant number of CB-, PV-, and CR-IR perikarya throughout the nucleus. The IGL of the rocky cavy exhibited a prominent CB- and CR-IR neuropil, showing similarity to the pattern found in other rodents. By comparing with literature data from other mammals, the results of the present study suggest that CB, PV, and CR are differentially distributed into the SCN and IGL among species. They may act either in concert or in a complementary manner in the SCN and IGL, so as to participate in specific aspects of the circadian regulation. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dorsal striatum (DS) is involved in various forms of learning and memory such as procedural learning, habit learning, reward-association and emotional learning. We have previously reported that bilateral DS lesions disrupt tone fear conditioning (TFC), but not contextual fear conditioning (CFC) [Ferreira TL, Moreira KM, Ikeda DC, Bueno OFA, Oliveira MGM (2003) Effects of dorsal striatum lesions in tone fear conditioning and contextual fear conditioning. Brain Res 987:17-24]. To further elucidate the participation of DS in emotional learning, in the present study, we investigated the effects of bilateral pretest (postraining) electrolytic DS lesions on TFC. Given the well-acknowledged role of the amygdala in emotional learning, we also examined a possible cooperation between DS and the amygdala in TFC, by using asymmetrical electrolytic lesions, consisting of a unilateral lesion of the central amygdaloid nucleus (CeA) combined to a contralateral DS lesion. The results show that pre-test bilateral DS lesions disrupt TFC responses, suggesting that DS plays a role in the expression of TFC. More importantly, rats with asymmetrical pre-training lesions were impaired in TFC, but not in CFC tasks. This result was confirmed with muscimol asymmetrical microinjections in DS and CeA, which reversibly inactivate these structures. On the other hand, similar pretest lesions as well as unilateral electrolytic lesions of CeA and DS in the same hemisphere did not affect TFC. Possible anatomical substrates underlying the observed effects are proposed. Overall, the present results underscore that other routes, aside from the well-established CeA projections to the periaqueductal gray, may contribute to the acquisition/consolidation of the freezing response associated to a TFC task. It is suggested that CeA may presumably influence DS processing via a synaptic relay on dopaminergic neurons of the substantia nigra compacta and retrorubral nucleus. The present observations are also in line with other studies showing that TFC and CFC responses are mediated by different anatomical networks. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The caudal pressor area (CPA) is a brainstem area located close to the spinal cord. The activation of the CPA increases sympathetic activity and mean arterial pressure (MAP) by mechanisms dependent on the commissural nucleus of the solitary tract (commNTS) and rostroventrolateral medulla, however, the signals that activate the CPA to produce these responses are still unknown. Therefore, in the present study, we investigated the activity of glutamatergic and GABAergic mechanisms from the CPA and commNTS in rats exposed to hypoxia and the effects of the inhibition of CPA neurons on cardiorespiratory responses to peripheral chemoreceptor activation with i.v. sodium cyanide (NaCN). Male Sprague-Dawley rats (250-280 g, n=5-8/group) were used. In conscious rats, most of the commNTS neurons (66 +/- 11%) and part of the CPA neurons (36 +/- 7%) activated by hypoxia (8% O2) were glutamatergic (contained VGLUT2mRNA). Small part of the neurons activated during hypoxia was GABAergic (contained GAD-67mRNA) in the commNTS (9 +/- 4%) or the CPA (6 +/- 2%). In urethane anesthetized rats, the inhibition of CPA neurons with bilateral injections of muscimol (GABA-A agonist, 2 mM) reduced baseline MAP, splanchnic sympathetic nerve discharge (SND) and phrenic nerve discharge (PND). Muscimol into the CPA also reduced by around 50% the pressor and sympathoexcitatory responses and the increase in PND to peripheral chemoreceptor activation with NaCN (50 mu g/kg i.v.), without changing sympathetic baroreflex responses. These data suggest that CPA mechanisms facilitate cardiorespiratory responses to peripheral chemoreflex activation. Immunohistochemistry results also suggest that at least part of the CPA mechanisms activated by hypoxia is glutamatergic. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Animals faced with conflicting cues, such as predatory threat and a given rewarding stimulus, must make rapid decisions to engage in defensive versus other appetitive behaviors. The brain mechanisms mediating such responses are poorly understood. However, the periaqueductal gray (PAG) seems particularly suitable for accomplishing this task. The PAG is thought to have, at least, two distinct general roles on the organization of motivated responses, i.e., one on the execution of defensive and reproductive behaviors, and the other on the motivational drive underlying adaptive responses. We have presently examined how the PAG would be involved in mediating the behavioral choice between mutually incompatible behaviors, such as reproduction or defense, when dams are exposed to pups and cat odor. First, we established the behavioral protocol and observed that lactating rats, simultaneously exposed to pups and cat odor, inhibited maternal behavior and expressed clear defensive responses. We have further revealed that cat odor exposure up-regulated Fos expression in the dorsal PAG, and that NMDA cytotoxic lesions therein were able to restore maternal responses, and, at the same time, block defensive responsiveness to cat odor. Potential paths mediating the dorsal PAG influences on the inhibition of appetitive (i.e., retrieving behavior) and consummatory (i.e., nursing) maternal responses are discussed. Overall, we were able to confirm the dual role of the PAG, where, in the present case, the dorsal PAG, apart from organizing defensive responses, also appears to account for the behavioral inhibition of non-defensive responses. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies from our laboratory have documented that the medial hypothalamic defensive system is critically involved in processing actual and contextual predatory threats, and that the dorsal premammillary nucleus (PMd) represents the hypothalamic site most responsive to predatory threats. Anatomical findings suggest that the PMd is in a position to modulate memory processing through a projecting branch to specific thalamic nuclei, i.e., the nucleus reuniens (RE) and the ventral part of the anteromedial nucleus (AMv). In the present study, we investigated the role of these thalamic targets in both unconditioned (i.e., fear responses to predatory threat) and conditioned (i.e., contextual responses to predator-related cues) defensive behaviors. During cat exposure, all experimental groups exhibited intense defensive responses with the animals spending most of the time in the home cage displaying freezing behavior. However, during exposure to the environment previously associated with a cat, the animals with combined RE + AMv lesions, and to a lesser degree, animals with single AMv unilateral lesions, but not animals with single RE lesions, presented a reduction of contextual conditioned defensive responses. Overall, the present results provide clear evidence suggesting that the PMd`s main thalamic targets (i.e., the nucleus reuniens and the AMv) seem to be critically involved in the emotional memory processing related to predator cues. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Combining the results of behavioral, neuronal immediate early gene activation, lesion and neuroanatomical experiments, we have presently investigated the role of the superior colliculus (SC) in predatory hunting. First, we have shown that insect hunting is associated with a characteristic large increase in Fos expression in the lateral part of the intermediate gray layer of the SC (Wig). Next, we have shown that animals with bilateral NMDA lesions of the lateral parts of the SC presented a significant delay in starting to chase the prey and longer periods engaged in other activities than predatory hunting. They also showed a clear deficit to orient themselves toward the moving prey and lost the stereotyped sequence of actions seen for capturing, holding and killing the prey. Our Phaseolus vulgaris-leucoagglutinin analysis revealed that the lateral SCig, besides providing the well-documented descending crossed pathway to premotor sites in brainstem and spinal cord, projects to a number of midbrain and diencephalic sites likely to influence key functions in the context of the predatory behavior, such as general levels of arousal, motivational level to hunt or forage, behavioral planning, appropriate selection of the basal ganglia motor plan to hunt, and motor output of the primary motor cortex. In contrast to the lateral SC lesions, medial SC lesions produced a small deficit in predatory hunting, and compared to what we have seen for the lateral SCig, the medial SCig has a very limited set of projections to thalamic sites related to the control of motor planning or motor output, and provides conspicuous inputs to brainstem sites involved in organizing a wide range of anti-predatory defensive responses. Overall, the present results served to clarify how the different functional domains in the SC may mediate the decision to pursue and hunt a prey or escape from a predator. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: The aim of this study was to evaluate the genotoxic effects of X-rays on epithelial gingival cells during panoramic dental radiography using a differentiated protocol for the micronucleus test. Methods: 40 healthy individuals who underwent this procedure for diagnostic purposes on request from their dentists agreed to participate in this study. All of them answered a questionnaire before the examination. Epithelial gingival cells were obtained from the keratinized mucosa of the upper dental arcade by gentle scraping with a cervical brush immediately before exposure and 10 days later. Cytological preparations were stained according to the Feulgen-Rossenbeck reaction, counterstained with fast green 1% for 1 min and analysed under a light microscope. Micronuclei, nuclear projections (broken eggs) and degenerative nuclear alterations (pyknosis, karyolysis, karyorrhexis and condensed chromatin) were scored. Results: The frequency of micronuclei was significantly higher after exposure (P < 0.05), as were frequencies of nuclear alterations indicate of apoptosis (P < 0.001). Conclusions: These results indicate that X-ray radiation emitted during panoramic dental radiography induces a genotoxic effect on epithelial gingival cells that increases the frequency of chromosomal damage and nuclear alterations indicative of apoptosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The prefrontal cortex (PFC) receives strong inputs from monoaminergic cell groups in the brainstem and also sends projections to these nuclei. Recent evidence suggests that the PFC exerts a powerful top-down control over the dorsal raphe nucleus (DR) and that it may be involved in the actions of pharmaceutical drugs and drugs of abuse. In the light of these findings, the precise origin of prefrontal inputs to DR was presently investigated by using the cholera toxin subunit b (CTb) as retrograde tracer. All the injections placed in DR produced retrograde labeling in the medial, orbital, and lateral divisions of the PFC as well as in the medial part of the frontal polar cortex. The labeling was primarily located in layer V. Remarkably, labeling in the medial PFC was denser in its ventral part (infralimbic and ventral prelimbic cortices) than in its dorsal part (dorsal prelimbic, anterior cingulate and medial precentral cortices). After injections in the rostral or caudal DR, the largest number of labeled neurons was observed in the medial PFC, whereas after injections in the mid-rostrocaudal DR, the labeled neurons were more homogeneously distributed in the three main PFC divisions. A cluster of labeled neurons also was observed around the apex of the rostral pole of the accumbens, especially after rostral and mid-rostrocaudal DR injections. Overall, these results confirm the existence of robust preftontal projections to DR, mainly derived from the ventral part of the medial PFC, and underscore a substantial contribution of the frontal polar cortex. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Serotonin (5-HT) is involved in the fine adjustments at several brain centers including the core of the mammal circadian timing system (CTS) and the hypothalamic suprachiasmatic nucleus (SCN). The SCN receives massive serotonergic projections from the midbrain raphe nuclei, whose inputs are described in rats as ramifying at its ventral portion overlapping the retinohypothalamic and geniculohypothalamic fibers. In the SCN, the 5-HT actions are reported as being primarily mediated by the 5-HT1 type receptor with noted emphasis for 5-HT(1B) subtype, supposedly modulating the retinal input in a presynaptic way. In this study in a New World primate species, the common marmoset (Callithrix jacchus), we showed the 5-HT(1B) receptor distribution at the dorsal SCN concurrent with a distinctive location of 5-HT-immunoreactive fibers. This finding addresses to a new discussion on the regulation and synchronization of the circadian rhythms in recent primates. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxytocinergic brainstem projections participate in the autonomic control of the circulation. We investigated the effects of hypertension and training on cardiovascular parameters after oxytocin (OT) receptor blockade within the nucleus tractus solitarii (NTS) and NTS OT and OT receptor expression. Male spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats were trained (55% of maximal exercise capacity) or kept sedentary for 3 months and chronically instrumented (NTS and arterial cannulae). Mean arterial blood pressure (MAP) and heart rate (HR) were measured at rest and during an acute bout of exercise after NTS pretreatment with vehicle or OT antagonist (20 pmol of OT antagonist (200 nl of vehicle)-1). Oxytocin and OT receptor were quantified (35S-oligonucleotide probes, in situ hybridization) in other groups of rats. The SHR exhibited high MAP and HR (P < 0.05). Exercise training improved treadmill performance and reduced basal HR (on average -11%) in both groups, but did not change basal MAP. Blockade of NTS OT receptor increased exercise tachycardia only in trained groups, with a larger effect on trained WKY rats (+31 +/- 9 versus +12 +/- 3 beats min-1 in the trained SHR). Hypertension specifically reduced NTS OT receptor mRNA density (-46% versus sedentary WKY rats, P < 0.05); training did not change OT receptor density, but significantly increased OT mRNA expression (+2.5-fold in trained WKY rats and +15% in trained SHR). Concurrent hypertension- and training-induced plastic (peptide/receptor changes) and functional adjustments (HR changes) of oxytocinergic control support both the elevated basal HR in the SHR group and the slowing of the heart rate (rest and exercise) observed in trained WKY rats and SHR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multidimensional Visualization techniques are invaluable tools for analysis of structured and unstructured data with variable dimensionality. This paper introduces PEx-Image-Projection Explorer for Images-a tool aimed at supporting analysis of image collections. The tool supports a methodology that employs interactive visualizations to aid user-driven feature detection and classification tasks, thus offering improved analysis and exploration capabilities. The visual mappings employ similarity-based multidimensional projections and point placement to layout the data on a plane for visual exploration. In addition to its application to image databases, we also illustrate how the proposed approach can be successfully employed in simultaneous analysis of different data types, such as text and images, offering a common visual representation for data expressed in different modalities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of projecting multidimensional data into lower dimensions has been pursued by many researchers due to its potential application to data analyses of various kinds. This paper presents a novel multidimensional projection technique based on least square approximations. The approximations compute the coordinates of a set of projected points based on the coordinates of a reduced number of control points with defined geometry. We name the technique Least Square Projections ( LSP). From an initial projection of the control points, LSP defines the positioning of their neighboring points through a numerical solution that aims at preserving a similarity relationship between the points given by a metric in mD. In order to perform the projection, a small number of distance calculations are necessary, and no repositioning of the points is required to obtain a final solution with satisfactory precision. The results show the capability of the technique to form groups of points by degree of similarity in 2D. We illustrate that capability through its application to mapping collections of textual documents from varied sources, a strategic yet difficult application. LSP is faster and more accurate than other existing high-quality methods, particularly where it was mostly tested, that is, for mapping text sets.