930 resultados para project portfolio selection
Resumo:
Autonomous navigation and locomotion of a mobile robot in natural environments remain a rather open issue. Several functionalities are required to complete the usual perception/decision/action cycle. They can be divided in two main categories : navigation (perception and decision about the movement) and locomotion (movement execution). In order to be able to face the large range of possible situations in natural environments, it is essential to make use of various kinds of complementary functionalities, defining various navigation and locomotion modes. Indeed, a number of navigation and locomotion approaches have been proposed in the literature for the last years, but none can pretend being able to achieve autonomous navigation and locomotion in every situation. Thus, it seems relevant to endow an outdoor mobile robot with several complementary navigation and locomotion modes. Accordingly, the robot must also have means to select the most appropriate mode to apply. This thesis proposes the development of such a navigation/locomotion mode selection system, based on two types of data: an observation of the context to determine in what kind of situation the robot has to achieve its movement and an evaluation of the behavior of the current mode, made by monitors which influence the transitions towards other modes when the behavior of the current one is considered as non satisfying. Hence, this document introduces a probabilistic framework for the estimation of the mode to be applied, some navigation and locomotion modes used, a qualitative terrain representation method (based on the evaluation of a difficulty computed from the placement of the robot's structure on a digital elevation map), and monitors that check the behavior of the modes used (evaluation of rolling locomotion efficiency, robot's attitude and configuration watching. . .). Some experimental results obtained with those elements integrated on board two different outdoor robots are presented and discussed.
Resumo:
Joint venture design teams are formed to combine resources and expertise in order to secure multi-discipline engineering design services on major projects. Bringing together resources from two ordinarily competing companies to form one joint team is however challenging as each parent company brings to the project its own organisational culture, processes and team attitudes. This study examined the factors that impact on forming a successful joint venture project team. Three critical areas were identified from an extensive literature review; Joint Venture Arrangements, Parent Companies and Forming the Team; and a survey was conducted with professionals who have worked in joint venture project teams in the Australian building industry in order to identify factors that affected successful joint venture team formation, and the common lessons learnt. This study reinforced the importance of three key criteria - trust, commitment and compatibility - for partner alignment. The results also identified four key lessons learnt which included; selecting the right resources, enabling a collaborative working environment by way of project office, implementing an independent Joint Venture Manager, and allocating work which is best for project with fees reflecting risk where risk is disproportionate.
Resumo:
This paper reports on an evaluation of a collaborative robotics engagement project involving teachers from local schools and an academic from Queensland University of Technology (QUT). Engaged community projects are aimed at building stronger relationships between universities and their local communities (Sandman, Williams & Abrams, 2009). This partnership leads to mutually beneficial outcomes, builds community capacity, and can focus on aspirations and access to higher education for school students (Scull & Cuthill, 2010). The Robotics@QUT project aimed to build a partnership between local teachers and the university in order to provide students from a low SES area opportunity to engage in robotics-based Science, Technology, Engineering, and Mathematics (STEM) activities. Students from low SES regions are underrepresented at university and less likely to pursue studies in these fields (Bradley, Noonan, Nugent, & Scales, 2008). Having teachers who provide engaging STEM activities is an important motivating factor for students to enjoy STEM and do well in STEM subjects (Tytler, Osborne Williams Tytler & Clark, 2008).
Resumo:
This paper demonstrates that project management is a developing field of academic study in management, of considerable diversity and richness, which can make a valuable contribution to the development of management knowledge, as well as being of considerable economic importance. The paper reviews the substantial progress and trends of research in the subject, which has been grouped into nine major schools of thought: optimization, modelling, governance, behaviour, success, decision, process, contingency, and marketing. The paper addresses interactions between the different schools and with other related management fields, and provides insights into current and potential research in each and across these schools.
Resumo:
While past knowledge-based approaches to service innovation have emphasized the role of integration of knowledge in the provisioning of solutions, these approaches fail to address complexities involved with knowledge integration in project-oriented context, specifically, how the firm’s capability to acquire new knowledge from clients and past project episodes influence the development of new service solutions. Adopting a dynamic capability framework and building on knowledge-based approaches to innovation, this paper presents a conceptual model that captures the interplay of learning capabilities and the knowledge integration capability in the service innovation-based competitive strategy. Implications to theory and directions for future research are discussed.
Resumo:
The author, Dean Shepherd, is of entrepreneurship—how entrepreneurs think, decide to act, and feel. He recently realized that while his publications in academic journals have implications for entrepreneurs, those implications have remained relatively hidden in the text of the articles and hidden in articles published in journals largely inaccessible to those involved in the entrepreneurial process. This series is designed to bring the practical implications of his research to the forefront.
Resumo:
Purpose This work introduces the concept of very small field size. Output factor (OPF) measurements at these field sizes require extremely careful experimental methodology including the measurement of dosimetric field size at the same time as each OPF measurement. Two quantifiable scientific definitions of the threshold of very small field size are presented. Methods A practical definition was established by quantifying the effect that a 1 mm error in field size or detector position had on OPFs, and setting acceptable uncertainties on OPF at 1%. Alternatively, for a theoretical definition of very small field size, the OPFs were separated into additional factors to investigate the specific effects of lateral electronic disequilibrium, photon scatter in the phantom and source occlusion. The dominant effect was established and formed the basis of a theoretical definition of very small fields. Each factor was obtained using Monte Carlo simulations of a Varian iX linear accelerator for various square field sizes of side length from 4 mm to 100 mm, using a nominal photon energy of 6 MV. Results According to the practical definition established in this project, field sizes < 15 mm were considered to be very small for 6 MV beams for maximal field size uncertainties of 1 mm. If the acceptable uncertainty in the OPF was increased from 1.0 % to 2.0 %, or field size uncertainties are 0.5 mm, field sizes < 12 mm were considered to be very small. Lateral electronic disequilibrium in the phantom was the dominant cause of change in OPF at very small field sizes. Thus the theoretical definition of very small field size coincided to the field size at which lateral electronic disequilibrium clearly caused a greater change in OPF than any other effects. This was found to occur at field sizes < 12 mm. Source occlusion also caused a large change in OPF for field sizes < 8 mm. Based on the results of this study, field sizes < 12 mm were considered to be theoretically very small for 6 MV beams. Conclusions Extremely careful experimental methodology including the measurement of dosimetric field size at the same time as output factor measurement for each field size setting and also very precise detector alignment is required at field sizes at least < 12 mm and more conservatively < 15 mm for 6 MV beams. These recommendations should be applied in addition to all the usual considerations for small field dosimetry, including careful detector selection.
Resumo:
Research into the international market selection (IMS) of small to medium sized enterprises (SMEs) commonly identifies psychic distance and networks as being the most important determinants of a firm’s IMS. Whether regional factors, such as bilateral and multilateral regional integration, are important as determinants of IMS is not well understood. This paper utilises a multiple case study method through in-depth interviews to investigate, in the context of the current business environment, how important regionalisation, psychic distance and networks are as determinants of IMS among SMEs in the food and beverage industries within Australia and Malaysia. The study found regional considerations to be important to the IMS of Malaysian but not Australian firms, while psychic distance was considered an important determinant on IMS by only half of the sampled firms. The role of networks, however, was considered the most important determinant of IMS among all the sampled firms.
Resumo:
My practice-led research explores and maps workflows for generating experimental creative work involving inertia based motion capture technology. Motion capture has often been used as a way to bridge animation and dance resulting in abstracted visuals outcomes. In early works this process was largely done by rotoscoping, reference footage and mechanical forms of motion capture. With the evolution of technology, optical and inertial forms of motion capture are now more accessible and able to accurately capture a larger range of complex movements. The creative work titled “Contours in Motion” was the first in a series of studies on captured motion data used to generating experimental visual forms that reverberate in space and time. With the source or ‘seed’ comes from using an Xsens MVN - Inertial Motion Capture system to capture spontaneous dance movements, with the visual generation conducted through a customised dynamics simulation. The aim of the creative work was to diverge way from a standard practice of using particle system and/or a simple re-targeting of the motion data to drive a 3d character as a means to produce abstracted visual forms. To facilitate this divergence a virtual dynamic object was tether to a selection of data points from a captured performance. The proprieties of the dynamic object were then adjusted to balance the influences from the human movement data with the influence of computer based randomization. The resulting outcome was a visual form that surpassed simple data visualization to project the intent of the performer’s movements into a visual shape itself. The reported outcomes from this investigation have contributed to a larger study on the use of motion capture in the generative arts, furthering the understanding of and generating theories on practice.
Resumo:
Too often the relationship between client and external consultants is perceived as one of protagonist versus antogonist. Stories on dramatic, failed consultancies abound, as do related anecdotal quips. A contributing factor to many "apparently" failed consultancies is a poor appreciation by both the client and consultant of the client's true goals for the project and how to assess progress toward these goals. This paper presents and analyses a measurement model for assessing client success when engaging an external consultant. Three main areas of assessment are identified: (1) the consultant;s recommendations, (2) client learning, and (3) consultant performance. Engagement success is emperically measured along these dimensions through a series of case studies and a subsequent survey of clients and consultants involved in 85 computer-based information system selection projects. Validation fo the model constructs suggests the existence of six distinct and individually important dimensions of engagement success. both clients and consultants are encouraged to attend to these dimensions in pre-engagement proposal and selection processes, and post-engagement evaluation of outcomes.
Resumo:
Background The transfer and/or retrieval of a critically patient is inherently dangerous not only for the patient but for staff as well. The quality and experience of unplanned transfers can influence patient mortality and morbidity. However, international evidence suggests that dedicated transfer/retrieval teams can improve mortality and morbidity outcomes. Aims The initial aim of this paper is to describe an in-house competency-based training programme, which encompasses the STaR approach to develop members of our existing nursing team to be part of the dedicated transfer/retrieval service. The paper also presents audit data findings which examined the source of referrals, number of patients actually transferred and clinical status of those being transferred. Results Audit data illustrate that the most frequent source of referrals comes from Accident and Emergency and the Surgical Directorate with the most common presenting condition being cardio-respiratory failure or arrest. Audit data reveal that the number of patients actually transferred or retrieved is relatively small (33%) compared with the overall number of requests for assistance. However, 36% of those patients transferred had a level 2 or level 3 acuity status that necessitated the admission to a critical care area. Conclusions A number of studies have concluded that the ill-experienced and ill-equipped transfer team can place patients’ at serious risk of harm. Whether planned or unplanned, dedicated critical care transfer/retrieval teams have been shown to reduce patient mortality and morbidity.
Resumo:
Reliability of carrier phase ambiguity resolution (AR) of an integer least-squares (ILS) problem depends on ambiguity success rate (ASR), which in practice can be well approximated by the success probability of integer bootstrapping solutions. With the current GPS constellation, sufficiently high ASR of geometry-based model can only be achievable at certain percentage of time. As a result, high reliability of AR cannot be assured by the single constellation. In the event of dual constellations system (DCS), for example, GPS and Beidou, which provide more satellites in view, users can expect significant performance benefits such as AR reliability and high precision positioning solutions. Simply using all the satellites in view for AR and positioning is a straightforward solution, but does not necessarily lead to high reliability as it is hoped. The paper presents an alternative approach that selects a subset of the visible satellites to achieve a higher reliability performance of the AR solutions in a multi-GNSS environment, instead of using all the satellites. Traditionally, satellite selection algorithms are mostly based on the position dilution of precision (PDOP) in order to meet accuracy requirements. In this contribution, some reliability criteria are introduced for GNSS satellite selection, and a novel satellite selection algorithm for reliable ambiguity resolution (SARA) is developed. The SARA algorithm allows receivers to select a subset of satellites for achieving high ASR such as above 0.99. Numerical results from a simulated dual constellation cases show that with the SARA procedure, the percentages of ASR values in excess of 0.99 and the percentages of ratio-test values passing the threshold 3 are both higher than those directly using all satellites in view, particularly in the case of dual-constellation, the percentages of ASRs (>0.99) and ratio-test values (>3) could be as high as 98.0 and 98.5 % respectively, compared to 18.1 and 25.0 % without satellite selection process. It is also worth noting that the implementation of SARA is simple and the computation time is low, which can be applied in most real-time data processing applications.
Resumo:
This PETAA paper discusses how the cross-curriculum priority concerned with developing Asia literacy, namely ‘Asia and Australia’s engagement with Asia’, can be significantly advanced through the study of children’s literature. The discussion proceeds from a brief overview of the historical development of Asia literacy to its current place within the Australian Curriculum. It then considers the potential of literature for assisting students and teachers in realising this priority through the Asian-Australian Children’s Literature and Publishing dataset, a research project on AustLit. Finally, it discusses a small selection of texts – two picture books and a novel – with suggestions or prompts for raising students’ intercultural understanding.
Resumo:
Construction delay has been a protracted problem for the Malaysian construction industry. Recent report showed that 80% of public sector projects are behind schedule. This underachieving time performance has led to many problems including public complaints, loss of reputation and revenue for the government and a slump in the industry’s GDP contribution. Research in the area of project delay has mushroomed worldwide with attempts to place mitigation plans, but delay remains a global phenomenon. There is now an urgent need for revolutionizing construction practices and past research, backed up with few successful cases suggests that Supply Chain Management (SCM) could prove beneficial to reduce or eliminate delays in construction. SCM which originated from the automotive manufacturing industry promotes a more collaborative approach to construction management and has recently gained attention of the construction industry. However every country, including Malaysia, would certainly have disparities of their own compared to others being it from the cultural point of view, nature of problems, locality or improvements needed. Therefore, this paper will present part of a Ph.D. research which aims at illustrating the Malaysian construction industry experts’ perception of the Malaysian public sector project delay, provide insight into these dilemmas, highlights the problems with current practices, its effects and the improvements needed. Subsequently, this paper would propose ratification to the problems using SCM. A semi-structured interview has been conducted to practitioners with at least 20 years’ experience in the industry. The findings showed that Malaysia may be unique compared to other countries and that by considering a number of additional factors, SCM could prove beneficial to increase efficiency of the Malaysian public sector projects.
Resumo:
Recently, Portfolio Theory (PT) has been proposed for Information Retrieval. However, under non-trivial conditions PT violates the original Probability Ranking Principle (PRP). In this poster, we shall explore whether PT upholds a different ranking principle based on Quantum Theory, i.e. the Quantum Probability Ranking Principle (QPRP), and examine the relationship between this new model and the new ranking principle. We make a significant contribution to the theoretical development of PT and show that under certain circumstances PT upholds the QPRP, and thus guarantees an optimal ranking according to the QPRP. A practical implication of this finding is that the parameters of PT can be automatically estimated via the QPRP, instead of resorting to extensive parameter tuning.