997 resultados para particle interactions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gold metallogelators is an emerging area of research. The number of results published in the literature is still scarce. The majority of these gels is observed in organic solvents, and the potential applications are still to be explored. In this work, we present an overview about gold metallogelators divided in two different groups depending on the type of solvent used in the gelation process (organogelators and hydrogelators). A careful analysis of the data shows that aurophilic interactions are a common motif directly involved in gelation involving Au(I) complexes. There are also some Au(III) derivatives able to produce gels but in this case the organic ligands determine the aggregation process. A last section is included about the potential applications that have been reported until now with this new and amazing class of supramolecular assemblies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several hundreds of artificial radionuclides are produced as the result of human activities, such as the applications of nuclear reactors and particle accelerators, testing of nuclear weapons and nuclear accidents. Many of these radionuclides are short-lived and decay quickly after their production, but some of them are longer-lived and are released into the environment. From the radiological point of view the most important radionuclides are cesium-137, strontium-90 and plutonium-239, due to their chemical and nuclear characteristics. The two first radioisotopes present long half life (30 and 28 years), high fission yields and chemical behaviour similar to potassium and calcium, respectively. No stable element exists for plutonium-239, that presents high radiotoxicity, long half-life (24000 years) and some marine organisms accumulate plutonium at high levels. The radionuclides introduced into marine environment undergo various physical, chemical and biological processes taking place in the sea. These processes may be due to physical dispersion or complicated chemical and biological interactions of the radionuclides with inorganic and organic suspend matter, variety of living organisms, bottom sediments, etc. The behaviour of radionuclides in the sea depends primarily on their chemical properties, but it may also be influenced by properties of interacting matrices and other environmental factors. The major route of radiation exposure of man to artificial radionuclides occuring in the marine environment is through ingestion of radiologically contamined marine organisms. This paper summarizes the main sources of contamination in the marine environment and presents an overview covering the oceanic distribution of anthropogenic radionuclides in the FAO regions. A great number of measurements of artificial radionuclides have been carried out on various marine environmental samples in different oceans over the world, being cesium-137 the most widely measured radionuclide. Radionuclide concentrations vary from region to region, according to the specific sources of contamination. In some regions, such as the Irish Sea, the Baltic Sea and the Black Sea, the concentrations depend on the inputs due to discharges from reprocessing facilities and from Chernobyl accident. In Brazil, the artificial radioactivity is low and corresponds to typical deposition values due to fallout for the Southern Hemisphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to source contamination and wearing of instrument components problems caused by the direct insertion probe technique, a new way of introduction of low volatile compounds into mass spectrometer was tested. This new scheme comprises the introduction of the low volatile compounds solutions via a six port valve connected to a particle beam interface. Solutions of isatin were injected into this system and the best results were obtained with CH2Cl2, CH3OH and CH3CN. The solution inlet system has shown to be advantageous over the conventional way of direct insertion probe introduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The large hadron collider constructed at the European organization for nuclear research, CERN, is the world’s largest single measuring instrument ever built, and also currently the most powerful particle accelerator that exists. The large hadron collider includes six different experiment stations, one of which is called the compact muon solenoid, or the CMS. The main purpose of the CMS is to track and study residue particles from proton-proton collisions. The primary detectors utilized in the CMS are resistive plate chambers (RPCs). To obtain data from these detectors, a link system has been designed. The main idea of the link system is to receive data from the detector front-end electronics in parallel form, and to transmit it onwards in serial form, via an optical fiber. The system is mostly ready and in place. However, a problem has occurred with innermost RPC detectors, located in sector labeled RE1/1; transmission lines for parallel data suffer from signal integrity issues over long distances. As a solution to this, a new version of the link system has been devised, a one that fits in smaller space and can be located within the CMS, closer to the detectors. This RE1/1 link system has been so far completed only partially, with just the mechanical design and casing being done. In this thesis, link system electronics for RE1/1 sector has been designed, by modifying the existing link system concept to better meet the requirements of the RE1/1 sector. In addition to completion of the prototype of the RE1/1 link system electronics, some testing for the system has also been done, to ensure functionality of the design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical approximation, depending on five parameters, for the atomic screening function is proposed. The corresponding electrostatic potential takes a simple analytical form (superposition of three Yukawa potentials) well suited to most practical applications. Parameters in the screening function, determined by an analytical fitting procedure to Dirac-Hartree-Fock-Slater (DHFS) self-consistent data, are given for Z=1¿92. The reliability of this analytical approach is demonstrated by showing that (a) Born cross sections for elastic scattering of fast charged particles by the present analytical field and by the DHFS field practically coincide and (b) one-electron binding energies computed from the independent-particle model with our analytical field (corrected for exchange and electrostatic self-interaction) agree closely with the DHFS energy eigenvalues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In nature, variation for example in herbivory, wind exposure, moisture and pollution impact often creates variation in physiological stress and plant productivity. This variation is seldom clear-cut, but rather results in clines of decreasing growth and productivity towards the high-stress end. These clines of unidirectionally changing stress are generally known as ‘stress gradients’. Through its effect on plant performance, stress has the capacity to fundamentally alter the ecological relationships between individuals, and through variation in survival and reproduction it also causes evolutionary change, i.e. local adaptations to stress and eventually speciation. In certain conditions local adaptations to environmental stress have been documented in a matter of just a few generations. In plant-plant interactions, intensities of both negative interactions (competition) and positive ones (facilitation) are expected to vary along stress gradients. The stress-gradient hypothesis (SGH) suggests that net facilitation will be strongest in conditions of high biotic and abiotic stress, while a more recent ‘humpback’ model predicts strongest net facilitation at intermediate levels of stress. Plant interactions on stress gradients, however, are affected by a multitude of confounding factors, making studies of facilitation-related theories challenging. Among these factors are plant ontogeny, spatial scale, and local adaptation to stress. The last of these has very rarely been included in facilitation studies, despite the potential co-occurrence of local adaptations and changes in net facilitation in stress gradients. Current theory would predict both competitive effects and facilitative responses to be weakest in populations locally adapted to withstand high abiotic stress. This thesis is based on six experiments, conducted both in greenhouses and in the field in Russia, Norway and Finland, with mountain birch (Betula pubescens subsp. czerepanovii) as the model species. The aims were to study potential local adaptations in multiple stress gradients (both natural and anthropogenic), changes in plant-plant interactions under conditions of varying stress (as predicted by SGH), potential mechanisms behind intraspecific facilitation, and factors confounding plant-plant facilitation, such as spatiotemporal, ontogenetic, and genetic differences. I found rapid evolutionary adaptations (occurring within a time-span of 60 to 70 years) towards heavy-metal resistance around two copper-nickel smelters, a phenomenon that has resulted in a trade-off of decreased performance in pristine conditions. Heavy-metal-adapted individuals had lowered nickel uptake, indicating a possible mechanism behind the detected resistance. Seedlings adapted to heavy-metal toxicity were not co-resistant to others forms of abiotic stress, but showed co-resistance to biotic stress by being consumed to a lesser extent by insect herbivores. Conversely, populations from conditions of high natural stress (wind, drought etc.) showed no local adaptations, despite much longer evolutionary time scales. Due to decreasing emissions, I was unable to test SGH in the pollution gradients. In natural stress gradients, however, plant performance was in accordance with SGH, with the strongest host-seedling facilitation found at the high-stress sites in two different stress gradients. Factors confounding this pattern included (1) plant size / ontogenetic status, with seedling-seedling interactions being competition dominated and host-seedling interactions potentially switching towards competition with seedling growth, and (2) spatial distance, with competition dominating at very short planting distances, and facilitation being strongest at a distance of circa ¼ benefactor height. I found no evidence for changes in facilitation with respect to the evolutionary histories of plant populations. Despite the support for SGH, it may be that the ‘humpback’ model is more relevant when the main stressor is resource-related, while what I studied were the effects of ‘non-resource’ stressors (i.e. heavy-metal pollution and wind). The results have potential practical applications: the utilisation of locally adapted seedlings and plant facilitation may increase the success of future restoration efforts in industrial barrens as well as in other wind-exposed sites. The findings also have implications with regard to the effects of global change in subarctic environments: the documented potential by mountain birch for rapid evolutionary change, together with the general lack of evolutionary ‘dead ends’, due to not (over)specialising to current natural conditions, increase the chances of this crucial forest-forming tree persisting even under the anticipated climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the influence of the single-particle structure on the neutron density distribution and the neutron skin in Ca, Ni, Zr, Sn, and Pb isotopes. The nucleon density distributions are calculated in the Hartree-Fock+BCS approach with the SLy4 Skyrme force. A close correlation is found between the quantum numbers of the valence neutrons and the changes in the position and the diffuseness of the nuclear surface, which in turn affect the neutron skin thickness. Neutrons in the valence orbitals with low principal quantum number and high angular momentum mainly displace the position of the neutron surface outwards, while neutrons with high principal quantum number and low angular momentum basically increase the diffuseness of the neutron surface. The impact of the valence shell neutrons on the tail of the neutron density distribution is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Adverse childhood experiences have been described as one of the major environmental risk factors for depressive disorder. Similarly, the deleterious impact of early traumatic experiences on depression seems to be moderated by individual genetic variability. Serotonin transporter (5-HTT) and brain-derived neurotrophic factor (BDNF) modulate the effect of childhood adversity on adult depression, although inconsistencies across studies have been found. Moreover, the gene×environment (G×E) interaction concerning the different types of childhood adversity remains poorly understood. The aim of this study was to analyse the putative interaction between the 5-HTT gene (5-HTTLPR polymorphism), the BDNF gene (Val66Met polymorphism) and childhood adversity in accounting for adult depressive symptoms. Method A sample of 534 healthy individuals filled in self-report questionnaires of depressive symptomatology [the Symptom Check List 90 Revised (SCL-90-R)] and different types of childhood adversities [the Childhood Trauma Questionnaire (CTQ)]. The 5-HTTLPR polymorphism (5-HTT gene) and the Val66Met polymorphism (BDNF gene) were genotyped in the whole sample. Results Total childhood adversity (β=0.27, p<0.001), childhood sexual abuse (CSA; β=0.17, p<0.001), childhood emotional abuse (β=0.27, p<0.001) and childhood emotional neglect (β=0.22, p<0.001) had an impact on adult depressive symptoms. CSA had a greater impact on depressive symptoms in Met allele carriers of the BDNF gene than in the Val/Val group (F=5.87, p<0.0001), and in S carriers of the 5-HTTLPR polymorphism (5-HTT gene) (F=5.80, p<0.0001). Conclusions Childhood adversity per se predicted higher levels of adult depressive symptoms. In addition, BDNF Val66Met and 5-HTTLPR polymorphisms seemed to moderate the effect of CSA on adult depressive symptoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fungi and bacteria are key agents in plant litter decomposition in freshwater ecosystems. However, the specific roles of these two groups and their interactions during the decomposition process are unclear. We compared the growth and patterns of degradativeenzymes expressed by communities of bacteria and fungi grown separately and in coexistence on Phragmites leaves. The two groups displayed both synergistic and antagonistic interactions. Bacteria grew better together with fungi than alone. In addition, there was a negative effect of bacteria on fungi, which appeared to be caused by suppression of fungal growth and biomass accrual rather than specifically affecting enzyme activity. Fungi growing alone had a high capacity for the decomposition of plant polymers such as lignin, cellulose, and hemicellulose. In contrast, enzyme activities were in general low when bacteria grew alone, and the activity of key enzymes in the degradation of lignin and cellulose (phenol oxidase and cellobiohydrolase) was undetectable in the bacteria-only treatment. Still, biomass-specific activities of most enzymes were higher in bacteria than in fungi. The low total activity and growth of bacteria in the absence of fungi in spite of apparent high enzymatic efficiency during the degradation of many substrates suggest that fungi provide the bacteria with resources that the bacteria were not able to acquire on their own, most probably intermediate decomposition products released by fungi that could be used by bacteria

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an overview of the long-term adaptation of hippocampal neurotransmission to cholinergic and GABAergic deafferentation caused by excitotoxic lesion of the medial septum. Two months after septal microinjection of 2.7 nmol a -amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA), a 220% increase of GABA A receptor labelling in the hippo- campal CA3 and the hilus was shown, and also changes in hippocampal neurotransmission characterised by in vivo microdialysis and HPLC. Basal amino acid and purine extra- cellular levels were studied in control and lesioned rats. In vivo effects of 100 m M KCl perfusion and adenosine A 1 receptor blockade with 1,3-dipropyl- 8-cyclopentylxanthine (DPCPX) on their release were also investigated. In lesioned animals GABA, glutamate and glutamine basal levels were decreased and taurine, adenosine and uric acid levels increased. A similar response to KCl infusion occurred in both groups except for GABA and glutamate, which release decreased in lesioned rats. Only in lesioned rats, DPCPX increased GABA basal level and KCl-induced glutamate release, and decreased glutamate turnover. Our results evidence that an excitotoxic septal lesion leads to increased hippocampal GABA A receptors and decreased glutamate neurotransmis- sion. In this situation, a co-ordinated response of hippocampal retaliatory systems takes place to control neuron excitability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants constitute an excellent ecosystem for microorganisms. The environmental conditions offered differ considerably between the highly variable aerial plant part and the more stable root system. Microbes interact with plant tissues and cells with different degrees of dependence. The most interesting from the microbial ecology point of view, however, are specific interactions developed by plant-beneficial (either non-symbiotic or symbiotic) and pathogenic microorganisms. Plants, like humans and other animals, also become sick, but they have evolved a sophisticated defense response against microbes, based on a combination of constitutive and inducible responses which can be localized or spread throughout plant organs and tissues. The response is mediated by several messenger molecules that activate pathogen-responsive genes coding for enzymes or antimicrobial compounds, and produces less sophisticated and specific compounds than immunoglobulins in animals. However, the response specifically detects intracellularly a type of protein of the pathogen based on a gene-for-gene interaction recognition system, triggering a biochemical attack and programmed cell death. Several implications for the management of plant diseases are derived from knowledge of the basis of the specificity of plant-bacteria interactions. New biotechnological products are currently being developed based on stimulation of the plant defense response, and on the use of plant-beneficial bacteria for biological control of plant diseases (biopesticides) and for plant growth promotion (biofertilizers)