882 resultados para nutrient availability
Resumo:
This study was carried out to determine apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of DM, CP, GE, and their respective digestible content of degermed dehulled corn (Zea mays), citrus pulp, and soy (Glycine max) protein concentrate by pigs using the difference method. Thirty-two barrows (28.1 +/- 1.6 kg of BW) were fed a corn-soybean meal basal diet or 1 of 3 diets formulated by replacing 30% of the basal diet with 30% of 1 of the test feedstuffs for 11 d. Chromic oxide (0.3%) was included in the diets. Feces were collected from days 7 to 11 by grab sampling and ileal digesta were collected after pigs were slaughtered on day 12. The AID of DM and AID and ATTD of GE of degermed corn (77.4, 88.7, and 77.7%) were greater (P < 0.05) than those observed in citrus pulp (50.3, 86.5, and 55.8%) and in soy protein concentrate (63.5, 85.1, and 59.4%), which did not differ (P > 0.05). The ATTD of CP, total digestible CP, and total DE of soy protein concentrate (87.5%, 500 g/kg, and 3739 kcal/kg) were higher (P < 0.05) than the values in degermed corn (81.7%, 57.5 g/kg, and 3330 kcal/kg), which were greater (P < 0.05) than those in citrus pulp (60.5%, 39.5 g/kg, and 3223 kcal/kg). Total and ileal digestible DM, AID of CP, and ileal DE of degermed corn (782 g/kg, 673 g/kg, 70.7%, and 2913 kcal/kg) and soy protein concentrate (778 g/kg, 570 g/kg, 78.7%, and 2878 kcal/kg) were similar (P > 0.05) and greater (P < 0.05) than those in citrus pulp (737 g/kg, 436 g/kg, 50.6%, and 2081 kcal/kg). Ileal digestible CP of degermed corn (49.8 g/kg) and citrus pulp (33.0 g/kg) did not differ (P > 0.05) but were smaller (P < 0.05) than the value found in soy protein concentrate (434 g/kg). The DM and energy from degermed corn are more efficiently digested by the pig than those from soy protein concentrate and citrus pulp. Soy protein concentrate was the best protein source evaluated in this study.
Resumo:
A performance trial was conducted with broiler chicks to Study the effect of phytase (PHY) supplementation in diets formulated With reduced AME, Ca, and P. The nutrient digestibility was determined during the 14- to 21-d and 28- to 35-d periods. The treatments consisted of 3 diets (NC1, NC2. NC3) differing ill nutrient content and each diet with Or without supplemental PHY (NC1, 0 oi 500; NC2, 0 or 750; NC3, 0 or 1,000 U of PHY/kg feed) and I positive control diet (PC). Compared with the PC diet. negative control diets (NC) resulted in lower AME and apparent ileal amino acid digestibility for some amino acids. Phytase Supplementation of the NC diets increased AME. apparent ileal amino acid digestibility, and apparent ileal crude protein digestibility. Phytase addition also increased mineral absorption in 2 1 - and 35-d-old broilers fed NC diets. Reduced nutrient digestibility appears to be I factor in the weight gain and feed intake results. Reducing Ca and P content reduced feed intake in a stepwise fashion in the NC diets. Phytase increased feed intake and generally improved nutrient digestibility, which resulted in an increase in digestible nutrient intake. Averaged across NC diets. PHY improved body weight. Bone-breaking strength was the most consistent predictor of Ca and P reduction. All NC diets had significantly lower bone-breaking strength than the PC. Phytase supplementation of the NC diets gave bone-breaking strengths that were comparable to the PC. Diets with PHY had the highest bioeconomic index.
Resumo:
Toxic levels of Al and low availability of Ca have been shown to decrease root growth, which can also be affected by P availability. In the current experiment, initial plant growth and nutrition of cotton (Gossypium hirsutum var. Latifolia) were studied as related to its root growth in response to phosphorus and lime application. The experiment was conducted in Botucatu, Sao Paulo, Brazil, in pots containing a Dark Red Latosol (Acrortox, 20% clay, 72% sand). Lime was applied at 0.56, 1.12 and 1.68 g kg -1 and phosphorus was applied at 50, 100 and 150 mg kg -1. Two cotton (cv. IAC 22) plants were grown per pot for up to 42 days after plant emergence. There was no effect of liming on shoot dry weight, root dry matter yield, root surface and length, but root diameter was decreased with the increase in soil Ca. Shoot dry weight, as well as root length, surface and dry weight were increased with soil P levels up to 83 mg kg -1. Phosphorus concentration in the shoots was increased from 1.6 to 3.0 g kg -1 when soil P was increased from 14 to 34 mg kg -1. No further increases in P concentration were observed with higher P rates. The shoot/root ratio was also increased with P application as well as the amount of nutrients absorbed per unit of root surface. In low soil P soils the transport of the nutrient to the cotton root surface limits P uptake. In this case an increase in root growth rate due to P fertilisation does not compensate for the low P diffusion in the soil.
Resumo:
Ferulic acid uptake by soybean root in nutrient culture was investigated by the depletion method at different concentrations, temperatures and pH. Results showed that soybean roots absorbed this compound at greater rates in the concentrations between 0.05-mM and 1.0-mM and it was concentration dependent. Ferulic acid uptake was unaffected at pH 4.5 or 6.0 but reduced at pH 7.0. At pH 6.0, uptake rates decreased significantly with increasing temperature of nutrient solution.
Resumo:
Dendrobium nobile orchids were grown for three years in different substrates (tree fern fiber, blocks of pressed coconut bark, bark of Eucalyptus grandis, mixtures with coconut bark blocks and eucalyptus bark and mixtures with the latter materials and charcoal. Plant growth increased with higher concentrations of S (up to 1.6 g/kg), Cu (up to 46 mg/kg) and Zn (up to 147 mg/kg), and decreased with higher concentrations of Ca (up to 13.2 g/kg), Mg (up to 6.6 g/kg) and B (up to 19 mg/kg). High Mo (up to 5.3 mg/kg) caused a more intense loss of leaves after planting. Relations between nutrient concentrations also affected plant growth. With exception of eucalyptus bark, all growing media under study were suitable for plant growth.
Resumo:
Crop rotation using cover crops with vigorous root systems may be a tool to manage soils with some degree of compaction. Root and shoot growth as well as nutrient accumulation by summer species suitable for crop rotation in tropical areas were studied at different subsoil compaction levels. Crotalaria juncea (Indian hemp), Crotalaria spectabilis (showy crotalaria), Helianthus annuus (sunflower), Pennisetum americanum (pearl millet) and Sorghum bicolor (guinea sorghum) were grown for 40 days in pots 33.5 cm high with 10 cm internal diameter. Soil in the pots had uniform bulkdensity of 1.25 Mg m-3 for the top and bottom 15 cm sections. Bulk densities of 1.31, 1.43, 1.58 and 1.70 Mg m-3 Were established in the 3.5 cm middle section. H. annuus and P. americanum had the highest early macronutrient accumulation. The grasses S. bicolor and P. americanum yielded twice as much shoot dry matter as the other species. Root growth generally decreased with increasing soil bulk density with C. spectabilis less affected than other species. Although the grasses were more sensitive to high soil penetration resistance, they showed higher root length densities at all compaction levels. P. americanum had the highest potential to be used as cover crop due to its high root density at high soil penetration resistances, vegetative vigour and ability to accumulate macronutrients. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
In order to evaluate growth characteristics, adaptability, biomass production, nutrient recycling, nutrient distribution and the ability to regenerate degraded land, a trial using four multipurpose tree species (Leucaena leucocephala, Leucaena diversifolia, Acacia melanoxylon and Mimosa scabrella) was undertaken over two years in a distrophic red yellow latosol (oxisol) following a randomized block experimental design with four replications. At the age of two years, A. melanoxylon and L. diversifolia were the tallest species (5.25 and 4.97 m, respectively) and A. melanoxylon and M. scabrella had the largest diameters at 20 cm from tree base. Mimosa scabrella and A. melanoxylon had the highest dry matter production and quantity of nutrients in the above ground biomass. In all species, the highest nutrient contents were found in the leaves, followed by branches and stems. From all species, the highest Nutrient Utilization Efficiency Indexes were obtained for sulphur, phosphorous, and magnesium; L. diversifolia was the most efficient for nitrogen, potassium, calcium, sulphur, and manganese, while A. melanoxylon was the most efficient for phosphorus, magnesium, boron, iron, and zinc. Litter production levels over a three month period were as follows: M. scabrella > A. melanoxylon > L. diversifolia > L. leucocephala. Litter nutrient content was higher in M. scabrella than in the other species.
Resumo:
The aim of this work was to evaluate the effects of aluminum on the growth of Eucalyptus shoots cultivated in vitro through nutrient and total soluble protein content. The trial had a totally randomized design with four treatments and four replicates. The treatments were: 0.0; 0.25; 0.5 and 1.0 mM of AlCl 3.6H 2O. Shoots without roots of a Eucalyptus grandis x E urophylla clone were used for the in vitro culture. Evaluations were made on the 4th, 8th, 12th, 16th, 20th, 24th and 28th day of culture. The Al addition to the culture media reduced mainly Ca, P and K availability and absorptions by the shoots. The cellular metabolism was affected, conducted to morphological alterations in shoots (browning, mass calluses formation and shoots not friable), dry matter increased and a decreased in total protein soluble.
Resumo:
In this study, non-nutrient heavy metal concentrations (Cd, Cr, Ni and Pb) were measured in composts during the composting process, in compost/Red-yellow Latosol mixtures, and in tomato plants. Composts were produced using sugar-cane bagasse, biosolids and cattle manure in the proportions 75-0-25, 75-12.5-12.5, 75-25-0, 50-50-0 or 0-100-0 (composts with 0, 12.5, 25, 50 and 100% biosolids). The composts were applied to the soil, in 6 treatments and a control (mineral fertilization). Control and the 0% biosolids treatments received inorganic nitrogen and all the treatments received the same amount of N, P and K. Tomato plants were cultivated in 24-L pots, in a green house in Jaboticabal, SP, Brazil. The experiment had a split plot design, in randomized blocks. Cadmium, Cr, Ni and Pb concentrations were determined during the composting process (7, 27, 57, 97 and 127 days after compost mounting), in soil (0 and 164 days after mixing) and plants. The samples were subjected to digestion with HNO 3, H2O2 and HCl and the metals were determined by AAS. Negative correlations were observed between Cd, Cr and Pb in the compost and Cd, Cr and Pb plant uptake, as well as Ni in the compost and Ni concentration in the plants. The concentrations of Cd, Cr, Ni and Pb increased during composting. Only Cd levels increased when compost was applied to the soil. The roots accumulated Cr, Ni and Pb, the stems and leaves, Cd and Ni and the fruits did not accumulate any of the metals studied. The composts with biosolids did not increase Cd, Cr, Ni and Pb uptake by plants.
Resumo:
Under biotic/abiotic stresses, the red alga Kappaphycus alvarezii reportedly releases massive amounts of H2O2 into the surrounding seawater. As an essential redox signal, the role of chloroplast-originated H2O2 in the orchestration of overall antioxidant responses in algal species has thus been questioned. This work purported to study the kinetic decay profiles of the redox-sensitive plastoquinone pool correlated to H2O2 release in seawater, parameters of oxidative lesions and antioxidant enzyme activities in the red alga Kappaphycus alvarezii under the single or combined effects of high light, low temperature, and sub-lethal doses of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), which are inhibitors of the thylakoid electron transport system. Within 24 h, high light and chilling stresses distinctly affected the availability of the PQ pool for photosynthesis, following Gaussian and exponential kinetic profiles, respectively, whereas combined stimuli were mostly reflected in exponential decays. No significant correlation was found in a comparison of the PQ pool levels after 24 h with either catalase (CAT) or ascorbate peroxidase (APX) activities, although the H2O2 concentration in seawater (R = 0.673), total superoxide dismutase activity (R = 0.689), and particularly indexes of protein (R = 0.869) and lipid oxidation (R = 0.864), were moderately correlated. These data suggest that the release of H2O2 from plastids into seawater possibly impaired efficient and immediate responses of pivotal H2O2-scavenging activities of CAT and APX in the red alga K. alvarezii, culminating in short-term exacerbated levels of protein and lipid oxidation. These facts provided a molecular basis for the recognized limited resistance of the red alga K. alvarezii under unfavorable conditions, especially under chilling stress. © 2006 Elsevier B.V. All rights reserved.
Resumo:
The mechanisms used by Paracoccidioides brasiliensis (Pb 18) to survive into monocytes are not clear. Cellular iron metabolism is of critical importance to the growth of several intracellular pathogens, including P. brasiliensis, whose capacity to multiply in mononuclear phagocytes is dependent on the availability of intracellular iron. Chloroquine, by virtue of its basic properties, has been shown to prevent release of iron from holotransferrin by raising endocytic and lysosomal pH, and thereby interfering with normal iron metabolism. Then, in view of this, we have studied the effects of CHLOR on P. brasiliensis multiplication in human monocytes and its effect on the murine paracoccidioidomycosis. CHLOR induced human monocytes to kill P. brasiliensis. The effect of CHLOR was reversed by FeNTA, an iron compound that is soluble at neutral to alkaline pH, but not by holotransferrin, which releases iron only in an acidic environment. CHLOR treatment of Pb 18-infected BALB/c mice significantly reduced the viable fungi recovery from lungs, during three different periods of evaluation, in a dose-dependent manner. This study demonstrates that iron is of critical importance to the survival of P. brasiliensis yeasts within human monocytes and the CHLOR treatment in vitro induces Pb 18 yeast-killing by monocytes by restricting the availability of intracellular iron. Besides, the CHLOR treatment in vivo significantly reduces the number of organisms in the lungs of Pb-infected mice protecting them from several infections. Thus, CHLOR was effective in the treatment of murine paracoccidioidomycosis, suggesting the potential use of this drug in patients' treatment.
Resumo:
The heavy metals when linked to organic matter have a behavior in the soil that is still little known. This study aimed to evaluate the effect of sewage-sludge-based composts when incorporated in the soil, in relation to heavy metals availability. Five composts were incorporated using sugar-cane bagasse, sewage sludge and cattle manure in the respective proportions: 75-0-25, 75-12.5-12.5, 75-25-0, 50-50-0 and 0-100-0 (composts with 0, 12.5, 25, 50 and 100% sewage sludge). The experiment consisted of 6 treatments (5 composts and a control with mineral fertilization) in randomized blocks with a split-plot design. The control and the treatment of 0% sewage sludge received inorganic nitrogen (N). All the treatments received the same amount of N (8.33 g) K (5.80 g) and K (8.11 g) per pot. Tomato plants were cultivated in 24.0 L pots in a greenhouse in Jaboticabal, SP, Brazil. The concentrations of heavy metals were determined in the soil samples at day 0 after compost incorporation. The higher the sewage sludge doses, the higher heavy metal contents in the soil. Among extractants, Melhlich-1 extracted the highest amount of heavy metals, while DTPA extracted the lowest one. The residual fraction presented the highest heavy metal content, followed by Fe oxides crystalline and amorphous to Cu, Cr and Mn, and Mn oxides, and Fe amorphous to Zn, indicating strong associations to oxides and clays. There were significant positive correlations between Mn contents in the plant and Mn linked to Fe oxide amorphous and crystalline.
Resumo:
Nectarivorous flower mites can reduce the volume of nectar available to pollinators. The effects of the flower mite Proctolaelaps sp. on nectar availability in flowers of a melittophilous bromeliad Neoregelia johannis (Bromeliaceae) was evaluated in a coastal rain forest in south-eastern Brazil. In a randomized block experiment utilizing 18 flower pairs, one per bromeliad ramet, pollinators (Bombus morio) and mites were excluded, and then nectar volume, sugar concentration and sugar mass were quantified over the anthesis period. Mites significantly reduced nectar volume early in the morning (6h00-8h00), but not later (10h00-12h00). Mites decreased total volume of nectar available up to 22%. Sugar concentration in nectar was higher earlier in the morning, and decreased between 10h00-12h00. The pronounced consumption of nectar by mites during the period of higher sugar concentration reduced the total amount of sugar available to pollinators by 31%. This is the first study showing that flower mites decrease nectar rewards in a melittophilous plant. Because nectar volume by itself incompletely describes nectar production rates and the effects of nectar removal by flower mites on the availability of sugar, our study highlights the inclusion of sugar content in future studies assessing the effects of thieves on nectar production rates. Copyright © 2010 Cambridge University Press.
Resumo:
Includes bibliography