956 resultados para marine and estuarine mangroves


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Miocene deposits (marine and terrestrial) distributed throughout the whole territory of Ukraine contain numerous palaeontological remains including plant macro- and microfossils. The Miocene strata of Ukraine belong to the Central and the Eastern Paratethys and deposits from these regions have been studied palynologically. For the reconstruction of the vegetation of lowland and mountain areas in Ukraine palynological data have been complemented with data obtained from carpological and foliar studies. To obtain quantitative palaeoclimate data to reconstruct the Miocene climate evolution in the Carpathian realm and the Ukrainian Plain a total of 17 microfloral records combined from pollen counts of numerous samples are analyzed with respect to 7 climate variables using the Coexistence Approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evidence for abrupt climate changes on millennial and shorter timescales is widespread in marine and terrestrial climate records (Dansgard et al., 1993, doi:10.1038/364218a0; Bond et al., 1993, doi:10.1038/365143a0; Charles et al., 1996, doi:10.1016/0012-821X(96)00083-0, Bard et al., 1997, doi:10.1038/385707a0). Rapid reorganization of ocean circulation is considered to exert some control over these changes (Broecker et al., 1985, doi:10.1038/315021a0), as are shifts in the concentrations of atmospheric greenhouse gases (Broecker, 1994, doi:10.1038/372421a0). The response of the climate system to these two influences is fundamentally different: slowing of thermohaline overturn in the North Atlantic Ocean is expected to decrease northward heat transport by the ocean and to induce warming of the tropical Atlantic (Crowley, 1992, doi:10.1029/92PA01058; Manabe and Stouffer, 1997, doi:10.1029/96PA03932), whereas atmospheric greenhouse forcing should cause roughly synchronous global temperature changes (Manabe et al., 1991, doi:10.1175/1520-0442(1991)004<0785:TROACO>2.0.CO;2). So these two mechanisms of climate change should be distinguishable by the timing of surface-water temperature variations relative to changes in deep-water circulation. Here we present a high-temporal-resolution record of sea surface temperatures from the western tropical North Atlantic Ocean which spans the past 29,000 years, derived from measurements of temperature-sensitive alkenone unsaturation in sedimentary organic matter. We find significant warming is documented for Heinrich event H1 (16,900-15,400 calendar years bp) and the Younger Dryas event (12,900-11,600 cal. yr bp), which were periods of intense cooling in the northern North Atlantic. Temperature changes in the tropical and high-latitude North Atlantic are out of phase, suggesting that the thermohaline circulation was the important trigger for these rapid climate changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bulk mineralogy of the terrigenous fraction of 99 samples from ODP Site 722 on the Owen Ridge, western Arabian Sea, has been determined by x-ray diffraction, using an internal standard method. The sampling interval, approximately 4.3 k.y., provides a detailed mineralogic record for the past 500 k.y. Previous studies have identified important modern continental sediment sources and the mineral assemblages presently derived from each. These studies have also demonstrated that most of this material is supplied by southwest and northwest winds during the summer monsoon. A variety of marine and terrestrial records and general circulation model (GCM) simulations have indicated the importance of monsoonal circulation during the Pleistocene and Holocene and have demonstrated increased aridity during glacial times and increased humidity during inter glacials. The mineralogic data generated here were used to investigate variations in source area weathering conditions during these environmental changes. Terrigenous minerals present include smectite, illite, palygorskite, kaolinite, chlorite, quartz, plagioclase feldspar, and dolomite. This mineralogy is consistent with the compositions of source areas presently supplying sediment to the Arabian Sea. An R-mode factor analysis has identified four mineral assemblages present throughout the past 500 k.y.: quartz/chlorite/dolomite (Factor 1), kaolinite/plagioclase/illite (Factor 2), smectite (Factor 3), and palygorskite/dolomite (Factor 4). Chlorite, illite, and palygorskite are extremely susceptible to chemical weathering, and a spectral comparison of these factors with the eolian mass accumulation rate (MAR) record from Hole 722B (an index of dust source area aridity) indicates that Factors 1, 2, and 4 are directly related to changes in aridity. Because of these characteristics, Factors 1,2, and 4 are interpreted to originate from arid source regions. Factor 3 is interpreted to record more humid source conditions. Time-series of scores for the four factors are dominated by short-term (10-100 k.y.) variability, and do not correlate well to glacial/interglacial fluctuations in the time domain. These characteristics suggest that local climatic shifts were complex, and that equilibrium weathering assemblages did not develop immediately after climatic change. Spectral analysis of factor scores identifies peaks at or near the primary Milankovitch frequencies for all factors. Factor 1 (quartz/chlorite/dolomite), Factor 2 (kaolinite/plagioclase/illite), and Factor 4 (illite/palygorskite) are coherent and in phase with the MAR record over the 23, 41, and 100 k.y. bands, respectively. The reasons for coherency at single Milankovitch frequencies are not known, but may include differences in the susceptibilities of minerals to varying time scales of weathering and/or preferential development of suitable continental source environments by climatic changes at the various Milankovitch frequencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Palaeocene/Eocene thermal maximum represents a period of rapid, extreme global warming approx ~55 million years ago, superimposed on an already warm world (Zachos et al., 2003, doi:10.1126/science.1090110; Bowen et al., 2004, doi:10.1038/nature03115; Thomas et al., 2002, doi:10.1130/0091-7613(2002)030<1067:WTFFTF>2.0.CO;2). This warming is associated with a severe shoaling of the ocean calcite compensation depth **4 and a >2.5 per mil negative carbon isotope excursion in marine and soil carbonates (Zachos et al., 2003, doi:10.1126/science.1090110; Bowen et al., 2004, doi:10.1038/nature03115; Thomas et al., 2002, doi:10.1130/0091-7613(2002)030<1067:WTFFTF>2.0.CO;2; Zachos et al., doi:10.1126/science.1109004). Together these observations indicate a massive release of 13C-depleted carbon (Zachos et al., doi:10.1126/science.1109004) and greenhouse-gas-induced warming. Recently, sediments were recovered from the central Arctic Ocean (Backman et al., 2006, doi:10.2204/iodp.proc.302.2006), providing the first opportunity to evaluate the environmental response at the North Pole at this time. Here we present stable hydrogen and carbon isotope measurements of terrestrial-plant- and aquatic-derived n-alkanes that record changes in hydrology, including surface water salinity and precipitation, and the global carbon cycle. Hydrogen isotope records are interpreted as documenting decreased rainout during moisture transport from lower latitudes and increased moisture delivery to the Arctic at the onset of the Palaeocene/Eocene thermal maximum, consistent with predictions of poleward storm track migrations during global warming (Backman et al., 2006, doi:10.2204/iodp.proc.302.2006). The terrestrial-plant carbon isotope excursion (about ~4.5 to ~6 per mil) is substantially larger than those of marine carbonates. Previously, this offset was explained by the physiological response of plants to increases in surface humidity (Bowen et al., 2004, doi:10.1038/nature03115). But this mechanism is not an effective explanation in this wet Arctic setting, leading us to hypothesize that the true magnitude of the excursion - and associated carbon input - was greater than originally surmised. Greater carbon release and strong hydrological cycle feedbacks may help explain the maintenance of this unprecedented warmth.of this unprecedented warmth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution proxy data analyzed on two high-sedimentation shallow water sedimentary sequences (PO287-26B and PO287-28B) recovered off Lisbon (Portugal) provide the means for comparison to long-term instrumental time series of marine and atmospheric parameters (sea surface temperature (SST), precipitation, total river flow, and upwelling intensity computed from sea level pressure) and the possibility to do the necessary calibration for the quantification of past climate conditions. XRF Fe is used as proxy for river flow, and the upwelling-related diatom genus Chaetoceros is our upwelling proxy. SST is estimated from the coccolithophore-synthesized alkenones and Uk'37 index. Comparison of the Fe record to the instrumental data reveals its similarity to a mean average run of the instrumentally measured winter (JFMA) river flow on both sites. The upwelling diatom record concurs with the upwelling indices at both sites; however, high opal dissolution, below 20-25 cm, prevents its use for quantitative reconstructions. Alkenone-derived SST at site 28B does not show interannual variation; it has a mean value around 16°C and compares quite well with the instrumental winter/spring temperature. At site 26B the mean SST is the same, but a high degree of interannual variability (up to 4°C) appears to be determined by summer upwelling conditions. Stepwise regression analyses of the instrumental and proxy data sets provided regressions that explain from 65 to 94% of the variability contained in the original data, and reflect spring and summer river flow, as well as summer and winter upwelling indices, substantiating the relevance of seasons to the interpretation of the different proxy signals. The lack of analogs and the small data set available do not allow quantitative reconstructions at this time, but this might be a powerful tool for reconstructing past North Atlantic Oscillation conditions, should we be able to find continuous high-resolution records and overcome the analog problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediment sampling with box corer and gravity corer was conducted along a profile parallel to the Filchner/Rønne Ice Shelf, from 48° to 61°W. Twenty-two sampling locations were determined after evaluation of 12 and 3.5 kHz sub-bottom profiling records. The sediment retrievals show a wide diversity, varying from very well sorted pure sands in the SE of the profile to heavily glacially influenced, pebbly muds close to the foot of the Antarctic Peninsula. In the middle part of the profile mainly soft sediments of muddy to sandy muds were found which were partially influenced by glacially derived dropstones or accumulations of pebble-sized material. The striking changes of surface sediments (marine to glacial) observed along the profile led to an attempt to investigate the concurrence of marine and glacial depositional processes controlling the accumulation of these recent sediments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of particulate organic matter (OM) in Arctic Ocean sediments from the Late Cretaceous to the Eocene (IODP Expedition 302) has revealed detailed information about the aquatic/marine OM fluxes, biological sources, preservation and export of terrestrial material. Here, we present detailed data from maceral analysis, vitrinite reflectance measurements and organic geochemistry. During the Campanian/Paleocene, fluxes of land-derived OM are indicated by reworked and oxidized macerals (vitrinite, inertinite) and terrigenous liptinite (cutinite, sporinite). In the Early Eocene, drastic environmental changes are indicated by peaks in aquatic OM (up to 40-45%, lamalginite, telalginite, liptodetrinite, dinoflagellate cysts) and amorphous OM (up to 50% bituminite). These events of increased aquatic OM flux, similar to conditions favoring black shale deposition, correlate with the global d13C events "Paleocene/Eocene Thermal Maximum" (PETM) and "Elmo-event". Freshwater discharge and proximity of the source area are documented by freshwater algae material (Pediastrum, Botryococcus) and immature land-plant material (corphuminite, textinite). We consider that erosion of coal-bearing sediments during transgression time lead to humic acids release as a source for bituminite deposited in the Early Eocene black shales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The four sites drilled on the Irish continental margin (Goban Spur) yielded sediments ranging in age from Holocene to Barremian. Most of the sediments were deposited in well oxygenated waters, and the small amounts of organic matter they contain are highly oxidized. During a few time intervals from the Cenomanian to earliest Turonian, however, the oxygen content of the bottom waters reached very low levels, resulting in the deposition of homogeneous or laminated black sediments containing from 0.5 to 11% total organic carbon (TOC). The original organic matter was of mixed marine and terrestrial origin. The oxidizing-reducing cycles represented by interbedded black and light sediments are probably a result of changes in both circulation and productivity. The black sediments at Sites 550, 551, and 549 were probably deposited near the lower end, middle, and upper end, respectively, of an expanded oxygen-minimum layer. The oil and gas source potential of the laminated black sediments is very good to excellent. The organic-carbon-lean sediments deposited under oxidizing conditions have no oil or gas source potential. The thermal maturity of all sediments is low.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Best's insurance reports ... upon American and foreign joint-stock companies, American mutual companies, inter-insurance associations, and individual underwriting organizations."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Report submitted by Herbert C. Bonner.