947 resultados para loss of function mutation
Resumo:
Loss-of-function mutations in human profilaggrin gene have been identified as the cause of ichthyosis vulgaris (IV), and as a major predisposition factor for atopic dermatitis (AD). Similarly, flaky tail (a/a ma ft/ma ft/J) mice were described as a model for IV, and shown to be predisposed to eczema. The aim of this study was to correlate the flaky tail mouse phenotype with human IV and AD, in order to dissect early molecular events leading to atopic dermatitis in mice and men, suffering from filaggrin deficiency. Thus, 5-days old flaky tail pups were analyzed histologically, expression of cytokines was measured in skin and signaling pathways were investigated by protein analysis. Human biopsies of IV and AD patients were analyzed histologically and by real time PCR assays. Our data show acanthosis and hyperproliferation in flaky tail epidermis, associated with increased IL1β and thymic stromal lymphopoietin (TSLP) expression, and Th2-polarization. Consequently, NFκB and Stat pathways were activated, and IL6 mRNA levels were increased. Further, quantitative analysis of late epidermal differentiation markers revealed increased Small proline-rich protein 2A (Sprr2a) synthesis. Th2-polarization and Sprr2a increase may result from high TSLP expression, as shown after analysis of 5-days old K14-TSLP tg mouse skin biopsies. Our findings in the flaky tail mouse correlate with data obtained from patient biopsies of AD, but not IV. We propose that proinflammatory cytokines are responsible for acanthosis in flaky tail epidermis, and together with the Th2-derived cytokines lead to morphological changes. Accordingly, the a/a ma ft/ma ft/J mouse model can be used as an appropriate model to study early AD onset associated with profilaggrin deficiency.
Resumo:
Protein destabilization by mutations or external stresses may lead to misfolding and aggregation in the cell. Often, damage is not limited to a simple loss of function, but the hydrophobic exposure of aggregate surfaces may impair membrane functions and promote the aggregation of other proteins. Such a "proteinacious infectious" behavior is not limited to prion diseases. It is associated to most protein-misfolding neurodegenerative diseases and to aging in general. With the molecular chaperones and proteases, cells have evolved powerful tools that can specifically recognize and act upon misfolded and aggregated proteins. Whereas some chaperones passively prevent aggregate formation and propagation, others actively unfold and solubilize stable aggregates. In particular, ATPase chaperones and proteases serve as an intracellular defense network that can specifically identify and actively remove by refolding or degradation potentially infectious cytotoxic aggregates. Here we discuss two types of molecular mechanisms by which ATPase chaperones may actively solubilize stable aggregates: (1) unfolding by power strokes, using the Hsp100 ring chaperones, and (2) unfolding by random movements of individual Hsp70 molecules. In bacteria, fungi, and plants, the two mechanisms are key for reducing protein damages from abiotic stresses. In animals devoid of Hsp100, Hsp70 appears as the core element of the chaperone network, preventing the formation and actively removing disease-causing protein aggregates.
Resumo:
Neural development and plasticity are regulated by neural adhesion proteins, including the polysialylated form of NCAM (PSA-NCAM). Podocalyxin (PC) is a renal PSA-containing protein that has been reported to function as an anti-adhesin in kidney podocytes. Here we show that PC is widely expressed in neurons during neural development. Neural PC interacts with the ERM protein family, and with NHERF1/2 and RhoA/G. Experiments in vitro and phenotypic analyses of podxl-deficient mice indicate that PC is involved in neurite growth, branching and axonal fasciculation, and that PC loss-of-function reduces the number of synapses in the CNS and in the neuromuscular system. We also show that whereas some of the brain PC functions require PSA, others depend on PC per se. Our results show that PC, the second highly sialylated neural adhesion protein, plays multiple roles in neural development.
Resumo:
Here, we describe severe neuropsychiatric symptoms in an HIV-positive Asian man with extremely high efavirenz plasma levels while receiving standard treatment with efavirenz/tenofovir/emtricitabine fixed-dose regimen. Genetic examination revealed compound homozygosity for loss-of-function alleles of CYP2B6, including coding for a rare truncated protein. Neuropsychiatric symptoms resolved completely after efavirenz discontinuation.
Resumo:
SummaryCanonical Wnt signaling is crucial for embryonic development and the homeostasis of certain adult tissues such as the gut and the skin. The role of canonical Wnt signaling in hematopoiesis is still debated. The expression of a dominant-active β-catenin in hematopoietic stem cells (HSCs) enhances the self-renewal capacity of HSCs but is detrimental for long-term hematopoiesis. In contrast, loss of function experiments show that absence of β- and γ-catenin does not impair steady-state hematopoiesis. It has been argued that the inducible deletion of β-catenin using the IFN-responsive Mx promoter may somehow influence stem cell fate. Herein we used the constitutive deletion of β-catenin specifically in hematopoietic cells to show that the absence of β- catenin, as well as γ-catenin deletion, does not impair normal hematopoiesis and self-renewal capacity of HSCs.Dysregulation of canonical Wnt signaling is causal for several types of cancer, including colon carcinoma or breast cancer. Recently, it was found that Wnt signal transduction was upregulated in certain leukemias. Based on these data, we have investigated whether β- and γ-catenin play a role for the induction of leukemias by oncogenic BCR-ABL translocation product. We show that the induction of B-ALL (B cell acute lymphocytic leukemia) is strongly reduced in the absence of γ-catenin, while the induction of CML (chronic myeloid leukemia) occurs at a normal rate. In the combined absence of β- and γ-catenin the induction of both CML and B-ALL is essentially blocked. Consistent with these data others have found that β-catenin is essential for the induction of CML by BCR-ABL.Collectively, we find that β- and γ-catenin are dispensable for normal hematopoiesis but essential for the development of BCR-ABL induced leukemias. These findings suggest that the canonical Wnt pathway may represent a promising target for the therapy of leukemia.RésuméLa voie de signalisation canonique Wnt est essentielle pour le développement embryonnaire ainsi que l'homéostasie de certains tissus adultes, comme les intestins et la peau. Le rôle de la voie canonique Wnt pour l'hématopoïèse est encore incertain. D'un coté l'expression d'une forme active de β-catenine dans les cellules souches de la moelle augmente leur potentiel d'auto- renouvellement mais est préjudiciable pour l'hématopoïèse à long terme. Par contre, l'absence de β- et γ-catenine n'empêche pas le déroulement normal de l'hématopoïèse. La façon dont est supprimée β-catenine, en utilisant le promoteur IFN-inductible Mx, pourrait influencer le sort des cellules souches. Ici nous détruisons β-catenine spécifiquement dans les cellules hématopoïétiques de manière constitutive et montrons que, en combinaison avec l'absence de γ-catenine, l'absence de β-catenine n'affecte pas le déroulement normal de l'hématopoïèse et la capacité des cellules souches de la moelle à se renouveler.Plusieurs sortes de cancers, comme celui du colon ou du sein, sont parfois dus à une dérégulation de la voie canonique Wnt. Récemment, certaines leucémies ont présenté une activation du signal Wnt. A partir de ces données, nous avons examiné si β- et γ-catenine jouent un rôle dans l'induction des leucémies causées par le produit de translocation BCR-ABL. Nous avons montré que l'induction de la leucémie aiguë lymphoïde de cellules Β (LAL-B) est grandement diminuée en l'absence de γ-catenin, alors que l'induction de la leucémie myéloïde chronique (LMC) n'est pas affectée. En l'absence des deux catenines, l'induction des deux leucémies LAL-B et LMC est presque complètement bloquée. En confirmation de nos données, un autre groupe a montré que β-catenine est essentielle pour le développement de la LMC. Ensemble, ces données nous montrent que β- et γ-catenine ne sont pas nécessaires pour l'hématopoïèse normale, mais essentielle pour le développement des leucémies induites par BCR-ABL. Cela suggère que la voie de signalisation canonique Wnt est une cible prometteuse pour de futures thérapies.
Resumo:
The treatment of advanced prostate cancer (PCa) remains a challenge. Identification of new molecular mechanisms that regulate PCa initiation and progression would provide targets for the development of new cancer treatments. The Foxm1 transcription factor is highly up-regulated in tumor cells, inflammatory cells, and cells of tumor microenvironment. However, its functions in different cell populations of PCa lesions are unknown. To determine the role of Foxm1 in tumor cells during PCa development, we generated two novel transgenic mouse models, one exhibiting Foxm1 gain-of-function and one exhibiting Foxm1 loss-of-function under control of the prostate epithelial-specific Probasin promoter. In the transgenic adenocarcinoma mouse prostate (TRAMP) model of PCa that uses SV40 large T antigen to induce PCa, loss of Foxm1 decreased tumor growth and metastasis. Decreased prostate tumorigenesis was associated with a decrease in tumor cell proliferation and the down-regulation of genes critical for cell proliferation and tumor metastasis, including Cdc25b, Cyclin B1, Plk-1, Lox, and Versican. In addition, tumor-associated angiogenesis was decreased, coinciding with reduced Vegf-A expression. The mRNA and protein levels of 11β-Hsd2, an enzyme playing an important role in tumor cell proliferation, were down-regulated in Foxm1-deficient PCa tumors in vivo and in Foxm1-depleted TRAMP C2 cells in vitro. Foxm1 bound to, and increased transcriptional activity of, the mouse 11β-Hsd2 promoter through the -892/-879 region, indicating that 11β-Hsd2 was a direct transcriptional target of Foxm1. Without TRAMP, overexpression of Foxm1 either alone or in combination with inhibition of a p19(ARF) tumor suppressor caused a robust epithelial hyperplasia, but was insufficient to induce progression from hyperplasia to PCa. Foxm1 expression in prostate epithelial cells is critical for prostate carcinogenesis, suggesting that inhibition of Foxm1 is a promising therapeutic approach for prostate cancer chemotherapy.
Resumo:
The phloem performs essential systemic functions in tracheophytes, yet little is known about its molecular genetic specification. Here we show that application of the peptide ligand CLAVATA3/EMBRYO SURROUNDING REGION 45 (CLE45) specifically inhibits specification of protophloem in Arabidopsis roots by locking the sieve element precursor cell in its preceding developmental state. CLE45 treatment, as well as viable transgenic expression of a weak CLE45(G6T) variant, interferes not only with commitment to sieve element fate but also with the formative sieve element precursor cell division that creates protophloem and metaphloem cell files. However, the absence of this division appears to be a secondary effect of discontinuous sieve element files and subsequent systemically reduced auxin signaling in the root meristem. In the absence of the formative sieve element precursor cell division, metaphloem identity is seemingly adopted by the normally procambial cell file instead, pointing to possibly independent positional cues for metaphloem formation. The protophloem formation and differentiation defects in brevis radix (brx) and octopus (ops) mutants are similar to those observed in transgenic seedlings with increased CLE45 activity and can be rescued by loss of function of a putative CLE45 receptor, BARELY ANY MERISTEM 3 (BAM3). Conversely, a dominant gain-of-function ops allele or mild OPS dosage increase suppresses brx defects and confers CLE45 resistance. Thus, our data suggest that delicate quantitative interplay between the opposing activities of BAM3-mediated CLE45 signals and OPS-dependent signals determines cellular commitment to protophloem sieve element fate, with OPS acting as a positive, quantitative master regulator of phloem fate.
Resumo:
DNA double strand breaks (DSBs) are mainly repaired via homologous recombination (HR) or nonhomologous end joining (NHEJ). These breaks pose severe threats to genome integrity but can also be necessary intermediates of normal cellular processes such as immunoglobulin class switch recombination (CSR). During CSR, DSBs are produced in the G1 phase of the cell cycle and are repaired by the classical NHEJ machinery. By studying B lymphocytes derived from patients with Cornelia de Lange Syndrome, we observed a strong correlation between heterozygous loss-of-function mutations in the gene encoding the cohesin loading protein NIPBL and a shift toward the use of an alternative, microhomology-based end joining during CSR. Furthermore, the early recruitment of 53BP1 to DSBs was reduced in the NIPBL-deficient patient cells. Association of NIPBL deficiency and impaired NHEJ was also observed in a plasmid-based end-joining assay and a yeast model system. Our results suggest that NIPBL plays an important and evolutionarily conserved role in NHEJ, in addition to its canonical function in sister chromatid cohesion and its recently suggested function in HR.
Resumo:
Context:Loss-of-function mutations in PROK2 and PROKR2 have been implicated in Kallmann syndrome (KS), characterized by hypogonadotropic hypogonadism and anosmia. Recent data suggest overlapping phenotypes/genotypes between KS and congenital hypopituitarism (CH), including septo-optic dysplasia (SOD).Objective:We screened a cohort of patients with complex forms of CH (n = 422) for mutations in PROK2 and PROKR2.Results:We detected 5 PROKR2 variants in 11 patients with SOD/CH: novel p.G371R and previously reported p.A51T, p.R85L, p.L173R, and p.R268C-the latter 3 being known functionally deleterious variants. Surprisingly, 1 patient with SOD was heterozygous for the p.L173R variant, whereas his phenotypically unaffected mother was homozygous for the variant. We sought to clarify the role of PROKR2 in hypothalamopituitary development through analysis of Prokr2(-/-) mice. Interestingly, these revealed predominantly normal hypothalamopituitary development and terminal cell differentiation, with the exception of reduced LH; this was inconsistent with patient phenotypes and more analogous to the healthy mother, although she did not have KS, unlike the Prokr2(-/-) mice.Conclusions:The role of PROKR2 in the etiology of CH, SOD, and KS is uncertain, as demonstrated by no clear phenotype-genotype correlation; loss-of-function variants in heterozygosity or homozygosity can be associated with these disorders. However, we report a phenotypically normal parent, homozygous for p.L173R. Our data suggest that the variants identified herein are unlikely to be implicated in isolation in these disorders; other genetic or environmental modifiers may also impact on the etiology. Given the phenotypic variability, genetic counseling may presently be inappropriate.
Resumo:
PURPOSE OF REVIEW: Clinical trials of CCR5 antagonists attest to their efficacy and tolerance in HIV treatment. However, there has been debate on their long-term safety because of the role of CCR5 in innate immunity. This review highlights gaps in our understanding of epidemiology of infections that are modulated by CCR5, in particular, in HIV-infected individuals. RECENT FINDINGS: In the mouse model, CCR5 has a role in the response against pathogens as diverse as Toxoplama gondii, West Nile virus, Mycobacterium tuberculosis, herpes simplex virus, Trypanosoma cruzi, Cryptococcus neoformans, Chlamydia trachomatis, Listeria, and plasmodia. In human cohorts, individuals carrying the defective CCR5Delta32 allele present an increased susceptibility to flavivirus (West Nile virus and tickborne encephalitis virus). The selective pressures that led to the spread of loss-of-function CCR5 mutations in humans (CCR5Delta32), and in mangabeys (CCR5Delta24) are not understood. SUMMARY: The recent availability of CCR5 antagonists has raised concern that genetic, biological, or chemical CCR5 knockout, although beneficial against some pathogens (i.e. HIV), could be deleterious for other processes implicated in pathogen response. The consequences of long-term pharmaceutical intervention on CCR5 should be carefully assessed through rigorous postmarketing surveillance.
Resumo:
Proper dialogue between presynaptic neurons and their targets is essential for correct synaptic assembly and function. At central synapses, Wnt proteins function as retrograde signals to regulate axon remodeling and the accumulation of presynaptic proteins. Loss of Wnt7a function leads to defects in the localization of presynaptic markers and in the morphology of the presynaptic axons. We show that loss of function of Dishevelled-1 (Dvl1) mimics and enhances the Wnt7a phenotype in the cerebellum. Although active zones appear normal, electrophysiological recordings in cerebellar slices from Wnt7a/Dvl1 double mutant mice reveal a defect in neurotransmitter release at mossy fi ber–granule cell synapses. Deficiency in Dvl1 decreases, whereas exposure to Wnt increases, synaptic vesicle recycling in mossy fi bers. Dvl increases the number of Bassoon clusters, and like other components of the Wnt pathway, it localizes to synaptic sites. These fi ndings demonstrate that Wnts signal across the synapse on Dvl-expressing presynaptic terminals to regulate synaptic assembly and suggest a potential novel function for Wnts in neurotransmitter release.
Resumo:
Background: Nucleoside analogs used in the chemotherapy of solid tumors, such as the capecitabine catabolite50-deoxy-5-fluorouridine (50-DFUR) trigger a transcriptomic response that involves the aquaglyceroporin aquaporin 3 along with other p53-dependent genes. Here, we examined whether up-regulation of aquaporin 3 (AQP3) mRNA incancer cells treated with 50-DFUR represents a collateral transcriptomic effect of the drug, or conversely, AQP3participates in the activity of genotoxic agents. Methods: The role of AQP3 in cell volume increase, cytotoxicity and cell cycle arrest was analyzed using loss-of-function approaches. Results: 50-DFUR and gemcitabine, but not cisplatin, stimulated AQP3 expression and cell volume, which was partially and significantly blocked by knockdown of AQP3. Moreover, AQP3 siRNA significantly blocked other effects of nucleoside analogs, including G1/S cell cycle arrest, p21 and FAS up-regulation, and cell growth inhibition. Short incubations with 5-fluorouracil (5-FU) also induced AQP3 expression and increased cell volume, and the inhibition of AQP3 expression significantly blocked growth inhibition triggered by this drug. To further establish whether AQP3 induction is related to cell cycle arrest and apoptosis, cells were exposed to long incubations with escalating doses of 5-FU. AQP3 was highly up-regulated at doses associated with cell cycle arrest, whereas at doses promoting apoptosis induction of AQP3 mRNA expression was reduced. Conclusions: Based on the results, we propose that the aquaglyceroporin AQP3 is required for cytotoxic activity of 5’-DFUR and gemcitabine in the breast cancer cell line MCF7 and the colon adenocarcinoma cell line HT29, and is implicated in cell volume increase and cell cycle arrest.
Resumo:
Background: Nucleoside analogs used in the chemotherapy of solid tumors, such as the capecitabine catabolite50-deoxy-5-fluorouridine (50-DFUR) trigger a transcriptomic response that involves the aquaglyceroporin aquaporin 3 along with other p53-dependent genes. Here, we examined whether up-regulation of aquaporin 3 (AQP3) mRNA incancer cells treated with 50-DFUR represents a collateral transcriptomic effect of the drug, or conversely, AQP3participates in the activity of genotoxic agents. Methods: The role of AQP3 in cell volume increase, cytotoxicity and cell cycle arrest was analyzed using loss-of-function approaches. Results: 50-DFUR and gemcitabine, but not cisplatin, stimulated AQP3 expression and cell volume, which was partially and significantly blocked by knockdown of AQP3. Moreover, AQP3 siRNA significantly blocked other effects of nucleoside analogs, including G1/S cell cycle arrest, p21 and FAS up-regulation, and cell growth inhibition. Short incubations with 5-fluorouracil (5-FU) also induced AQP3 expression and increased cell volume, and the inhibition of AQP3 expression significantly blocked growth inhibition triggered by this drug. To further establish whether AQP3 induction is related to cell cycle arrest and apoptosis, cells were exposed to long incubations with escalating doses of 5-FU. AQP3 was highly up-regulated at doses associated with cell cycle arrest, whereas at doses promoting apoptosis induction of AQP3 mRNA expression was reduced. Conclusions: Based on the results, we propose that the aquaglyceroporin AQP3 is required for cytotoxic activity of 5’-DFUR and gemcitabine in the breast cancer cell line MCF7 and the colon adenocarcinoma cell line HT29, and is implicated in cell volume increase and cell cycle arrest.
Resumo:
Directed cell migration and axonal guidance are essential steps in neural development. Both processes are controlled by specific guidance cues that activate the signaling cascades that ultimately control cytoskeletal dynamics. Another essential step in migration and axonal guidance is the regulation of plasmalemma turnover and exocytosis in leading edges and growth cones. However, the cross talk mechanisms linking guidance receptors and membrane exocytosis are not understood. Netrin-1 is a chemoattractive cue required for the formation of commissural pathways. Here, we show that the Netrin-1 receptor deleted in colorectal cancer (DCC) forms a protein complex with the t-SNARE (target SNARE) protein Syntaxin-1 (Sytx1). This interaction is Netrin-1 dependent both in vitro and in vivo, and requires specific Sytx1 and DCC domains. Blockade of Sytx1 function by using botulinum toxins abolished Netrin-1-dependent chemoattraction of axons in mouse neuronal cultures. Similar loss-of-function experiments in the chicken spinal cord in vivo using dominant-negative Sytx1 constructs or RNAi led to defects in commissural axon pathfinding reminiscent to those described in Netrin-1 and DCC loss-of-function models. We also show that Netrin-1 elicits exocytosis at growth cones in a Sytx1-dependent manner. Moreover, we demonstrate that the Sytx1/DCC complex associates with the v-SNARE (vesicle SNARE) tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP) and that knockdown of TI-VAMP in the commissural pathway in the spinal cord results in aberrant axonal guidance phenotypes. Our data provide evidence of a new signaling mechanism that couples chemotropic Netrin-1/DCC axonal guidance and Sytx1/TI-VAMP SNARE proteins regulating membrane turnover and exocytosis.
Resumo:
Directed cell migration and axonal guidance are essential steps in neural development. Both processes are controlled by specific guidance cues that activate the signaling cascades that ultimately control cytoskeletal dynamics. Another essential step in migration and axonal guidance is the regulation of plasmalemma turnover and exocytosis in leading edges and growth cones. However, the cross talk mechanisms linking guidance receptors and membrane exocytosis are not understood. Netrin-1 is a chemoattractive cue required for the formation of commissural pathways. Here, we show that the Netrin-1 receptor deleted in colorectal cancer (DCC) forms a protein complex with the t-SNARE (target SNARE) protein Syntaxin-1 (Sytx1). This interaction is Netrin-1 dependent both in vitro and in vivo, and requires specific Sytx1 and DCC domains. Blockade of Sytx1 function by using botulinum toxins abolished Netrin-1-dependent chemoattraction of axons in mouse neuronal cultures. Similar loss-of-function experiments in the chicken spinal cord in vivo using dominant-negative Sytx1 constructs or RNAi led to defects in commissural axon pathfinding reminiscent to those described in Netrin-1 and DCC loss-of-function models. We also show that Netrin-1 elicits exocytosis at growth cones in a Sytx1-dependent manner. Moreover, we demonstrate that the Sytx1/DCC complex associates with the v-SNARE (vesicle SNARE) tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP) and that knockdown of TI-VAMP in the commissural pathway in the spinal cord results in aberrant axonal guidance phenotypes. Our data provide evidence of a new signaling mechanism that couples chemotropic Netrin-1/DCC axonal guidance and Sytx1/TI-VAMP SNARE proteins regulating membrane turnover and exocytosis.