990 resultados para intermediate band width manganites
Resumo:
We successfully applied the Green function theory in GW approximation to calculate the quasiparticle energies for semiconductors Si and GaAs. Ab initio pseudopotential method was adopted to generate basis wavefunctions and charge densities for calculating dielectric matrix elements and electron self-energies. To evaluate dynamical effects of screened interaction, GPP model was utilized to extend dieletric matrix elements from static results to finite frequencies. We give a full account of the theoretical background and the technical details for the first principle pseudopotential calculations of quasiparticle energies in semiconductors and insulators. Careful analyses are given for the effective and accurate evaluations of dielectric matrix elements and quasiparticle self-energies by using the symmetry properties of basis wavefunctions and eigenenergies. Good agreements between the calculated excitation energies and fundamental energy gaps and the experimental band structures were achieved.
Resumo:
In this paper, we propose the periodic boundary condition which can be applied to a variety of semiconductor nanostructures to overcome che difficulty of solving Schrodinger equation under the natural boundary condition. When the barrier width is large enough. the average of the maximum and minimum of energy band under the periodic boundary condition is very close to the energy level obtained under the natural boundary condition. As an example, we take the GaAs/Ga1-xAlxAs system, If the width of the Ga1-xAlxAs barrier is 200 Angstrom, the average of the maximum and minimum of energy band of the GaAs/Ga1-xAlxAs superlattices is very close to the energy level of the GaAs/Ga1-xAlxAs quantum wells (QWs). We give the electronic structure effective mass calculation of T-shaped quantum wires (T-QWRs) under the periodic boundary condition, The lateral confinement energies E1D-2D of electrons and holes, the energy difference between T-QWRs and QWs, are precisely determined.
Resumo:
The electronic states and optical transition properties of three semiconductor wires Si? GaAs, and ZnSe are studied by the empirical pseudopotential homojunction model. The energy levels, wave functions, optical transition matrix elements, and lifetimes are obtained for wires of square cross section with width from 2 to 5 (root 2a/2), where a is the lattice constant. It is found that these three kinds of wires have different quantum confinement properties. For Si wires, the energy gap is pseudodirect, and the wave function of the electronic ground state consists mainly of four bulk Delta states. The optical transition matrix elements are much smaller than that of a direct transition, and increase with decreasing wire width. Where the width of wire is 7.7 Angstrom, the Si wire changes from an indirect energy gap to a direct energy gap due to mixing of the bulk Gamma(15) state. For GaAs wires. the energy gap is also pseudodirect in the width range considered, but the optical transition matrix elements are larger than those of Si wires by two orders of magnitude for the same width. However, there is no transfer to a direct energy gap as the wire width decreases. For ZnSe wires, the energy gap is always direct, and the optical transition matrix elements are comparable to those of the direct energy gap bulk semiconductors. They decrease with decreasing wire width due to mixing of the bulk Gamma(1) state with other states. All quantum confinement properties are discussed and explained by our theoretical model and the semiconductor energy band structures derived. The calculated lifetimes of the Si wire, and the positions of photoluminescence peaks, are in good agreement with experimental results.
Resumo:
The one-dimensional energy bands and corresponding conductivities of a T-shaped quantum-dot superlattice are studied in various cases: different periods, with potential barriers between dots, and in transverse electric fields. It is found that the conductivity of the superlattices has a similar energy relation to the conductance of a single quantum dot, but vanishes in the energy gap region. The energy band of a superlattice with periodically modulated conducting width in the perpendicular magnetic field is calculated for comparison with magneto-transport experiments. It is found that due to the edge state effect the electron has strong quantum transport features. The energy gaps change with the width of the channel, corresponding to the deep peaks in the conductance curve. This method of calculating the energy bands of quantum-dot superlattices is applicable to complex geometric structures without substantial difficulty. (C) 1997 American Institute of Physics.
Resumo:
The transfer-matrix method widely used in the calculation of the band structure of semiconductor quantum wells is found to have limitations due to its intrinsic numerical instability. It is pointed out that the numerical instability arises from free-propagating transfer matrices. A new scattering-matrix method is developed for the multiple-band Kane model within the envelope-function approximation. Compared with the transfer-matrix method, the proposed algorithm is found to be more efficient and stable. A four-band Kane model is used to check the validity of the method and the results are found to be in good agreement with earlier calculations.
Resumo:
The valence hole subbands, TE and TM mode optical gains, transparency carrier density, and radiative current density of the zinc-blende GaN/Ga0.85Al0.15N strained quantum well (100 Angstrom well width) have been investigated using a 6 X 6 Hamiltonian model including the heavy hole, Light hole, and spin-orbit split-off bands. At the k = 0 point, it is found that the light hole strongly couples with the spin-orbit split-off hole, resulting in the so+lh hybrid states. The heavy hole does not couple with the light hole and the spin-orbit split-off hole. Optical transitions between the valence subbands and the conduction subbands obey the Delta n=0 selection rule. At the k not equal 0 points, there is strong band mixing among the heavy hole, light hole, and spin-orbit split-off hole. The optical transitions do not obey the Delta n=0 selection rule. The compressive strain in the GaN well region increases the energy separation between the so1+lh1 energy level and the hh1 energy level. Consequently, the compressive strain enhances the TE mode optical gain, and strongly depresses the TM mode optical gain. Even when the carrier density is as large as 10(19) cm(-3), there is no positive TM mode optical gain. The TE mode optical gain spectrum has a peak at around 3.26 eV. The transparency carrier density is 6.5 X 10(18) cm(-3), which is larger than that of GaAs quantum well. The compressive strain overall reduces the transparency carrier density. The J(rad) is 0.53 kA/cm(2) for the zero optical gain. The results obtained in this work will be useful in designing quantum well GaN laser diodes and detectors. (C) 1996 American Institute of Physics.
Resumo:
The electronic properties of wide energy gap zinc-blende structure GaN, AlN and their alloys Ga1-xAlxN are investigated using the empirical pseudopotential method. Electron and hole Effective mass parameters, hydrostatic and shear deformation potential constants of the valence band at Gamma and those of the conduction band at Gamma and X are obtained. The energies of Gamma, X, L conduction valleys of Ga1-xAlxN alloy versus Al fraction x are also calculated. The information will be useful for the design of lattice mismatched heterostructure optoelectronic devices in the blue light range.
Resumo:
An asymmetric MOSFET-C band-pass filter(BPF)with on chip charge pump auto-tuning is presented.It is implemented in UMC (United Manufacturing Corporation)0.18μm CMOS process technology. The filter system with auto-tuning uses a master-slave technique for continuous tuning in which the charge pump OUtputs 2.663 V, much higher than the power supply voltage, to improve the linearity of the filter. The main filter with third order low-pass and second order high-pass properties is an asymmetric band-pass filter with bandwidth of 2.730-5.340 MHz. The in-band third order harmonic input intercept point(HP3) is 16.621 dBm,wim 50 Ω as the source impedance. The input referred noise iS about 47.455μVrms. The main filter dissipates 3.528 mW while the auto-tuning system dissipates 2.412 mW from a 1.8 V power supply. The filter with the auto-tuning system occupies 0.592 mm~2 and it can be utilized in GPS (global positioning system)and Bluetooth systems.
Resumo:
This paper presents a wide tuning range CMOS frequency synthesizer for a dual-band GPS receiver,which has been fabricated in a standard 0.18μm RF CMOS process. With a high Q on-chip inductor, the wide-band VCO shows a tuning range from 2 to 3.6GHz to cover 2.45 and 3.14GHz in case of process corner or temperature variation,with a current consumption varying accordingly from 0.8 to 0.4mA,from a 1.8V supply voltage. Measurement results show that the whole frequency synthesizer consumes very low power of 5.6mW working at L1 band with in-band phase noise less than - 82dBc/Hz and out-of-band phase noise about - ll2dBc/Hz at 1MHz offset from a 3. 142GHz carrier. The performance of the frequency synthesizer meets the requirements of GPS applications very well.
Resumo:
A power amplifier MIC with power combining based on AlGaN/GaN HEMTs was fabricated and measured. The amplifier consists of four 10×120μm transistors. A Wilkinson splitters and combining were used to divide and combine the power. By biasing the amplifier at V_(DS) =40V, I(DS)= 0. 9A, a maximum CW output power of 41. 4dBm with a maximum power added efficiency (PAE) of 32. 54% and a power combine efficiency of 69% was achieved at 5. 4GHz.
Resumo:
Thick GaN films were grown on GaN/sapphire template in a vertical HVPE reactor. Various material characterization techniques,including AFM, SEM, XRD, RBS/Channeling, CL, PL, and XPS, were used to characterize these GaN epitaxial films. It was found that stepped/terraced structures appeared on the film surface,which were indicative of a nearly step-flow mode of growth for the HVPE GaN despite the high growth rate. A few hexagonal pits appeared on the surface, which have strong light emission. After being etched in molten KOH, the wavy steps disappeared and hexagonal pits with {1010} facets appeared on the surface. An EPD of only 8 ×10~6cm~(-2) shows that the GaN film has few dislocations. Both XRD and RBS channeling indicate the high quality of the GaN thick films. Sharp band-edge emission with a full width at half maximum(FWHM)of 67meV was observed, while the yellow and infrared emissions were also found. These emissions are likely caused by native defects and C and O impurities.
Resumo:
We present the design of a wide-band low-noise amplifier (LNA) implemented in 0.35μm SiGe BiCMOS technology for cable and terrestrial tuner applications. The LNA utilizes current injection to achieve high linearity. Without using inductors, the LNA achieves 0.1 ~ 1GHz wide bandwidth and 18. 8dB gain with less than 1.4dB of gain variation. The noise figure of the wideband LNA is 5dB, and its 1dB compression point is - 2dBm and IIP3 is 8dBm. The LNA dissipates 120mW of power with a 5V supply.
Resumo:
We analyze a wide-band,high-linearity down-conversion mixer for cable receptions that is implemented in 0. 35μm SiGe BiCMOS technology. The bandwidth of the RF (radio frequency) input covers the range from 1 to 1.8GHz. The measured input power at the - 1dB compression point of the mixer reaches + 14.23dBm. The highest voltage conversion gain is 8. 31dB, while the lowest noise figure is 19.4dB. The power consumed is 54mW with a 5V supply. The test result of the down-conversion mixer is outlined.