942 resultados para intensity modulated
Resumo:
This thesis concerns with the main aspects of medical trace molecules detection by means of intracavity laser absorption spectroscopy (ICLAS), namely with the equirements for highly sensitive, highly selective, low price, and compact size sensor. A novel two modes semiconductor laser sensor is demonstrated. Its operation principle is based on the competition between these two modes. The sensor sensitivity is improved when the sample is placed inside the two modes laser cavity, and the competition between the two modes exists. The effects of the mode competition in ICLAS are discussed theoretically and experimentally. The sensor selectivity is enhanced using external cavity diode laser (ECDL) configuration, where the tuning range only depends on the external cavity configuration. In order to considerably reduce the sensor cost, relative intensity noise (RIN) is chosen for monitoring the intensity ratio of the two modes. RIN is found to be an excellent indicator for the two modes intensity ratio variations which strongly supports the sensor methodology. On the other hand, it has been found that, wavelength tuning has no effect on the RIN spectrum which is very beneficial for the proposed detection principle. In order to use the sensor for medical applications, the absorption line of an anesthetic sample, propofol, is measured. Propofol has been dissolved in various solvents. RIN has been chosen to monitor the sensor response. From the measured spectra, the sensor sensitivity enhancement factor is found to be of the order of 10^(3) times of the conventional laser spectroscopy.
Resumo:
High-speed semiconductor lasers are an integral part in the implemen- tation of high-bit-rate optical communications systems. They are com- pact, rugged, reliable, long-lived, and relatively inexpensive sources of coherent light. Due to the very low attenuation window that exists in the silica based optical fiber at 1.55 μm and the zero dispersion point at 1.3 μm, they have become the mainstay of optical fiber com- munication systems. For the fabrication of lasers with gratings such as, distributed bragg reflector or distributed feedback lasers, etching is the most critical step. Etching defines the lateral dimmensions of the structure which determines the performance of optoelectronic devices. In this thesis studies and experiments were carried out about the exist- ing etching processes for InP and a novel dry etching process was de- veloped. The newly developed process was based on Cl2/CH4/H2/Ar chemistry and resulted in very smooth surfaces and vertical side walls. With this process the grating definition was significantly improved as compared to other technological developments in the respective field. A surface defined grating definition approach is used in this thesis work which does not require any re-growth steps and makes the whole fabrication process simpler and cost effective. Moreover, this grating fabrication process is fully compatible with nano-imprint lithography and can be used for high throughput low-cost manufacturing. With usual etching techniques reported before it is not possible to etch very deep because of aspect ratio dependent etching phenomenon where with increasing etch depth the etch rate slows down resulting in non-vertical side walls and footing effects. Although with our de- veloped process quite vertical side walls were achieved but footing was still a problem. To overcome the challenges related to grating defini- tion and deep etching, a completely new three step gas chopping dry etching process was developed. This was the very first time that a time multiplexed etching process for an InP based material system was demonstrated. The developed gas chopping process showed extra ordinary results including high mask selectivity of 15, moderate etch- ing rate, very vertical side walls and a record high aspect ratio of 41. Both the developed etching processes are completely compatible with nano imprint lithography and can be used for low-cost high-throughput fabrication. A large number of broad area laser, ridge waveguide laser, distributed feedback laser, distributed bragg reflector laser and coupled cavity in- jection grating lasers were fabricated using the developed one step etch- ing process. Very extensive characterization was done to optimize all the important design and fabrication parameters. The devices devel- oped have shown excellent performance with a very high side mode suppression ratio of more than 52 dB, an output power of 17 mW per facet, high efficiency of 0.15 W/A, stable operation over temperature and injected currents and a threshold current as low as 30 mA for almost 1 mm long device. A record high modulation bandwidth of 15 GHz with electron-photon resonance and open eye diagrams for 10 Gbps data transmission were also shown.
Resumo:
Es ist bekannt, dass die Umsatzdynamik der organischen Substanz von der Bodenbearbeitungsintensität abhängt. Bis jetzt sind nur wenige Daten zum Einfluss der Bearbeitungsintensität und des Zwischenfruchtanbaus auf C-, N-, und P-Dynamik im Ober- (0-5 cm Tiefe) und Unterboden (5-25 cm Tiefe) von Lössböden verfügbar. Hauptziele dieser Arbeit waren die (i) Quantifizierung des Einflusses von verschiedenen langzeitig durchgeführten Bearbeitungssystemen auf labile, intermediäre, und passive C- und N-Pools; (ii) Quantifizierung des Einflusses dieser Systeme auf P-Fraktionen mit unterschiedlicher Verfügbarkeit für die Pflanzenaufnahme; (iii) Quantifizierung des Einflusses des Zwischenfruchtanbaus in Verbindung mit einer unterschiedlichen Einarbeitungstiefe der der Zwischenfrüchte auf mineralisierbares C und N. Die Ergebnisse des 1. und 2. Teilexperiments basieren auf Untersuchungen von 4 Langzeitfeldexperimenten (LFE) in Ost- und Süddeutschland, die zwischen 1990 und 1997 durch das Institut für Zuckerrübenforschung angelegt wurden. Jedes LFE umfasst 3 Bearbeitungssysteme: konventionelle Bearbeitung (CT), reduzierte Bearbeitung (RT) und Direktsaat (NT). Die Ergebnisse des 3. Teilexperiments basieren auf einem Inkubationsexperiment. Entsprechend den Hauptfragestellungen wurden folgende Untersuchungsergebnisse beschrieben: (i) Im Oberboden von NT wurden höhere labile C-Vorräte gefunden (C: 1.76 t ha-1, N: 166 kg ha-1), verglichen mit CT (C: 0.44 t ha-1, N: 52 kg ha-1). Im Gegensatz dazu waren die labile- C-Vorräte höher im Unterboden von CT mit 2.68 t ha-1 verglichen zu NT mit 2 t ha-1 und RT mit 1.87 t ha-1. Die intermediären C-Vorräte betrugen 73-85% der gesamten organischen C-Vorräte, intermediäre N-Vorräte betrugen 70-95% des Gesamt-N im Ober- und Unterboden und waren vielfach größer als die labilen und passiven C- und N-Vorräte. Nur im Oberboden konnte ein Effekt der Bearbeitungsintensität auf die intermediären N-Pools mit höheren Vorräten unter NT als CT festgestellt werden. Die passiven C- und N-Pools waren eng mit den mineralischen Bodeneigenschaften verbunden und unabhängig vom Bearbeitungssystem. Insgesamt hat sich gezeigt, dass 14 bis 22 Jahre durchgängige Direktsaatverfahren nur im Oberboden zu höheren labilen C- und N-Vorräten führen, verglichen zu konventionellen Systemen. Dies lässt eine tiefenabhängige Stärke der Dynamik der organischen Bodensubstanz vermuten. (ii) Die Konzentration des Gesamt-P (Pt) im Oberboden war höher in NT (792 mg kg-1) und ~15% höher als die Pt-Konzentration in CT (691 mg kg 1). Die Abnahme der Pt-Konzentration mit zunehmender Bodentiefe war höher in NT als in CT. Dies gilt auch für die einzelnen P-Fraktionen, ausgenommen der stabilsten P-Fraktion (residual-P). Generell hatte das Bearbeitungssystem nur einen kleinen Einfluss auf die P-Konzentration mit höheren Pt-Konzentrationen in Böden unter NT als CT. Dies resultiert vermutlich aus der flacheren Einarbeitung der Pflanzenreste als in CT. (iii) Im Zwischenfruchtexperiment war der Biomassezuwachs von Senf am höchsten und nimmt in der Reihenfolge ab (oberirdischer Ertrag in t / ha): Senf (7.0 t ha-1) > Phacelia (5.7 t ha-1) > Ölrettich (4.4 t ha-1). Damit war potentiell mineralisierbares C und N am höchsten in Böden mit Senfbewuchs. Kumulative CO2- und N2O-Emissionen während der Inkubation unterschieden sich nicht signifikant zwischen den Zwischenfruchtvarianten und waren unabhängig von der Verteilung der Pflanzenreste im Boden. Die kumulativen ausgewaschenen mineralisierten N (Nmin)-Vorräte waren in den brachliegenden Böden am höchsten. Die Nmin-Vorräte waren 51-72% niedriger in den Varianten mit Zwischenfrucht und Einarbeitung verglichen zur Brache. In den Varianten ohne Einarbeitung waren die Nmin-Vorräte 36-55% niedriger verglichen zur Brache. Dies weißt auf einen deutlichen Beitrag von Zwischenfrüchten zur Reduzierung von Nitrat-Auswaschung zwischen Winter und Frühjahr hin. Insgesamt führte reduzierte Bearbeitung zu einer Sequestrierung von C und N im Boden und der Zwischenfruchtanbau führte zu reduzierten N-Verlusten. Die P-Verfügbarkeit war höher unter Direktsaat verglichen zur konventionellen Bearbeitung. Diese Ergebnisse resultieren aus den höheren Konzentrationen der OS in den reduzierten, als in den konventionellen Systemen. Die Ergebnisse zeigen deutlich das Potential von reduzierter Bearbeitung zur Sequestrierung von intermediärem C und N zur Reduzierung von klimarelevanten Treibhausgasen. Gleichzeitig steigen die Konzentrationen an pflanzenverfügaren P-Gehalten. Zwischenfrüchte führen auch zu einem Anstieg der C- und N-Vorräte im Boden, offensichtlich unabhängig von der Zwischenfruchtart.
Resumo:
The goal of this research is to develop the prototype of a tactile sensing platform for anthropomorphic manipulation research. We investigate this problem through the fabrication and simple control of a planar 2-DOF robotic finger inspired by anatomic consistency, self-containment, and adaptability. The robot is equipped with a tactile sensor array based on optical transducer technology whereby localized changes in light intensity within an illuminated foam substrate correspond to the distribution and magnitude of forces applied to the sensor surface plane. The integration of tactile perception is a key component in realizing robotic systems which organically interact with the world. Such natural behavior is characterized by compliant performance that can initiate internal, and respond to external, force application in a dynamic environment. However, most of the current manipulators that support some form of haptic feedback either solely derive proprioceptive sensation or only limit tactile sensors to the mechanical fingertips. These constraints are due to the technological challenges involved in high resolution, multi-point tactile perception. In this work, however, we take the opposite approach, emphasizing the role of full-finger tactile feedback in the refinement of manual capabilities. To this end, we propose and implement a control framework for sensorimotor coordination analogous to infant-level grasping and fixturing reflexes. This thesis details the mechanisms used to achieve these sensory, actuation, and control objectives, along with the design philosophies and biological influences behind them. The results of behavioral experiments with a simple tactilely-modulated control scheme are also described. The hope is to integrate the modular finger into an %engineered analog of the human hand with a complete haptic system.
Resumo:
Ecological validity of static and intense facial expressions in emotional recognition has been questioned. Recent studies have recommended the use of facial stimuli more compatible to the natural conditions of social interaction, which involves motion and variations in emotional intensity. In this study, we compared the recognition of static and dynamic facial expressions of happiness, fear, anger and sadness, presented in four emotional intensities (25 %, 50 %, 75 % and 100 %). Twenty volunteers (9 women and 11 men), aged between 19 and 31 years, took part in the study. The experiment consisted of two sessions in which participants had to identify the emotion of static (photographs) and dynamic (videos) displays of facial expressions on the computer screen. The mean accuracy was submitted to an Anova for repeated measures of model: 2 sexes x [2 conditions x 4 expressions x 4 intensities]. We observed an advantage for the recognition of dynamic expressions of happiness and fear compared to the static stimuli (p < .05). Analysis of interactions showed that expressions with intensity of 25 % were better recognized in the dynamic condition (p < .05). The addition of motion contributes to improve recognition especially in male participants (p < .05). We concluded that the effect of the motion varies as a function of the type of emotion, intensity of the expression and sex of the participant. These results support the hypothesis that dynamic stimuli have more ecological validity and are more appropriate to the research with emotions.
Resumo:
An increase in altitude leads to a proportional fall in the barometric pressure, and a decrease in atmospheric oxygen pressure, producing hypobaric hypoxia that affects, in different degrees, all body organs, systems and functions. The chronically reduced partial pressure of oxygen causes that individuals adapt and adjust to physiological stress. These adaptations are modulated by many factors, including the degree of hypoxia related to altitude, time of exposure, exercise intensity and individual conditions. It has been established that exposure to high altitude is an environmental stressor that elicits a response that contributes to many adjustments and adaptations that influence exercise capacity and endurance performance. These adaptations include in crease in hemoglobin concentration, ventilation, capillary density and tissue myoglobin concentration. However, a negative effect in strength and power is related to a decrease in muscle fiber size and body mass due to the decrease in the training intensity. Many researches aim at establishing how training or living at high altitudes affects performance in athletes. Training methods, such as living in high altitudes training low, and training high-living in low altitudes have been used to research the changes in the physical condition in athletes and how the physiological adaptations to hypoxia can enhanceperformance at sea level. This review analyzes the literature related to altitude training focused on how physiological adaptations to hypoxic environments influence performance, and which protocols are most frequently used to train in high altitudes.
Resumo:
Resumen basado en el de la publicación
Resumo:
Resumen tomado de la publicación
Resumo:
Metal pollution in rivers is in great concern with human activities in the fluvial watershed. This thesis aims to investigate the potential use of chl-a fluorescence parameters as biomarkers of metal toxicity, and to find cause-effect relationships between metal exposures, other environmental factor (i.e. light), and functional and structural biofilm responses. This thesis demonstrates that the use of chl-a fluorescence parameters allows detect early effects on biofilms caused by zinc toxicity, both in the laboratory as in polluted rivers. In microcosm experiments, the use of chl-a fluorescence parameters allows evaluates structural changes on photosynthetic apparatus and in algal groups’ composition of biofilms long-term exposed to zinc. In order to evaluate the effects of chronic metal pollution in rivers, it is recommended the use of biofilm translocation experiments and the use of a multi-biomarker approach.
Resumo:
Cortical auditory evoked potentials were recorded in cochlear implant recipients and in individuals with normal hearing using a speech stimulus. Responses were acquired over two test sessions to investigate between group differences and test repeatability. Results indicate significant differences in N1-P2 latency and amplitude measures between cochlear implant recipients and individuals with normal hearing.
Resumo:
The Aspen Parkland of Canada is one of the most important breeding areas for temperate nesting ducks in North America. The region is dominated by agricultural land use, with approximately 9.3 million ha in pasture land for cattle grazing. However, the effects of using land for cattle grazing on upland-nesting duck production are poorly understood. The current study was undertaken during 2001 and 2002 to investigate how nest density and nesting success of upland-nesting ducks varied with respect to the intensity of cattle grazing in the Aspen Parkland. We predicted that the removal and trampling of vegetation through cattle grazing would reduce duck nest density. Both positive and negative responses of duck nesting success to grazing have been reported in previous studies, leading us to test competing hypotheses that nesting success would (1) decline linearly with grazing intensity or (2) peak at moderate levels of grazing. Nearly 3300 ha of upland cover were searched during the study. Despite extensive and severe drought, nest searches located 302 duck nests. As predicted, nest density was higher in fields with lower grazing intensity and higher pasture health scores. A lightly grazed field with a pasture score of 85 out of a possible 100 was predicted to have 16.1 nests/100 ha (95% CI = 11.7–22.1), more than five times the predicted nest density of a heavily grazed field with a pasture score of 58 (3.3 nests/100 ha, 95% CI = 2.2–4.5). Nesting success was positively related to nest-site vegetation density across most levels of grazing intensity studied, supporting our hypothesis that reductions in vegetation caused by grazing would negatively affect nesting success. However, nesting success increased with grazing intensity at the field scale. For example, nesting success for a well-concealed nest in a lightly grazed field was 11.6% (95% CI = 3.6–25.0%), whereas nesting success for a nest with the same level of nest-site vegetation in a heavily grazed field was 33.9% (95% CI = 17.0–51.8%). Across the range of residual cover observed in this study, nests with above-average nest-site vegetation density had nesting success rates that exceeded the levels believed necessary to maintain duck populations. Our findings on complex and previously unreported relationships between grazing, nest density, and nesting success provide useful insights into the management and conservation of ground-nesting grassland birds.
Resumo:
This paper provides some insights on the quasi-biennial oscillation (QBO) modulated 11-year solar cycle (11-yr SC) signals in Northern Hemisphere (NH) winter temperature and zonal wind. Daily ERA-40 Reanalysis and ECMWF Operational data for the period of 1958-2006 were used to examine the seasonal evolution of the QBO-solar cycle relationship at various pressure levels up to the stratopause. The results show that the solar signals in the NH winter extratropics are indeed QBO-phase dependent, moving poleward and downward as winter progresses with a faster descent rate under westerly QBO than under easterly QBO. In the stratosphere, the signals are highly significant in late January to early March and have a life span of 30-50 days. Under westerly QBO, the stratospheric solar signals clearly lead and connect to those in the troposphere in late March and early April where they have a life span of 10 days. As the structure changes considerably from the upper stratosphere to the lower troposphere, the exact month when the maximum solar signals occur depends largely on the altitude chosen. For the low-latitude stratosphere, our analysis supports a vertical double-peaked structure of positive signature of the 11-yr SC in temperature, and demonstrates that this structure is further modulated by the QBO. These solar signals have a longer life span (3-4 months) in comparison to those in the extratropics. The solar signals in the lower stratosphere are stronger in early winter but weaker in late winter, while the reverse holds in the upper stratosphere.