958 resultados para human vascular endothelial cells
Resumo:
Budlein A has been reported to exert some analgesic and anti-inflammatory properties. In this study, we have evaluated its effect on LPS-induced leukocyte recruitment in vivo and the mechanisms involved in its anti-inflammatory activity. In vivo, intravital videomicroscopy was used to determine the effects of budlein A on LPS-induced leukocyte-endothelial cell interactions in the murine cremasteric microcirculation. In vitro, the effects of budlein A on LPS-induced cytokine, chemokine and nitrites release, T-cell proliferative response as well as cell adhesion molecule expression (CAM) were evaluated. In vivo, intraperitoneal administration of budlein A (2.6 mM/kg) caused a significant reduction of LPS-induced leukocyte rolling flux, adhesion and emigration by 84, 92 and 96% respectively. In vitro, T-cell proliferative response was also affected by budlein A. When murine J774 macrophages were incubated with the sesquiterpene lactone, LPS-induced IL-1 beta, tumor necrosis factor-alpha (TNF-alpha) and keratinocyte-derived chemokine (KC) release were concentration-dependently inhibited. In human umbilical vein endothelial cells (HUVECs), budlein A also reduced the production of TNF-alpha, monocyte chemoattractant protein-1 (MCP-1), IL-8, nitrites and CAM expression elicited by LPS. Budlein A is a potent inhibitor of LPS-induced leukocyte accumulation in vivo. This effect appears to be mediated through inhibition of cytokine and chemokine release and down-regulation of CAM expression. Thus, it has potential therapeutic interest for the control of leukocyte recruitment that occurs in different inflammatory disorders. (C) 2009 Elsevier GrnbH. All rights reserved.
Resumo:
10-(Octyloxy) decyl-2-(trimethylammonium) ethyl phosphate (ODPC) is an alkylphospholipid that can interact with cell membranes because of its amphiphilic character. We describe here the interaction of ODPC with liposomes and its toxicity to leukemic cells with an ED-50 of 5.4, 5.6 and 2.9 pM for 72 h of treatment for inhibition of proliferation of NB4, U937 and K562 cell lines, respectively, and lack of toxicity to normal hematopoietic progenitor cells at concentrations up to 25 pM. The ED-50 for the non-malignant HEK-293 and primary human umbilical vein endothelial cells (HUVEC) was 63.4 and 60.7 mu M, respectively. The critical micellar concentration (CMC) of ODPC was 200 mu M. Dynamic light scattering indicated that dipalmitoylphosphatidylcholine (DPPC) liposome size was affected only above the CMC of ODPC. Differential calorimetric scanning (DCS) of liposomes indicated a critical transition temperature (T(c)) of 41.5 degrees C and an enthalpy (Delta H) variation of 7.3 kcal mol(-1). The presence of 25 mu M ODPC decreased T(c) and Delta H to 393 degrees C and 4.7 kcal mol(-1), respectively. ODPC at 250 mu M destabilized the liposomes (36.3 degrees C. 0.46 kcal mol(-1)). Kinetics of 5(6)-carboxyfluorescein (CF) leakage from different liposome systems indicated that the rate and extent of CF release depended on liposome composition and ODPC concentration and that above the CMC it was instantaneous. Overall, the data indicate that ODPC acts on in vitro membrane systems and leukemia cell lines at concentrations below its CMC, suggesting that it does not act as a detergent and that this effect is dependent on membrane composition. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Introduction. Chronic allograft vasculopathy is an important cause of graft loss. Considering the inflammatory response in the development of chronic vascular lesions, therapeutic approaches to target the inflammatory process may be useful. We sought to investigate the possible protective effects on balloon catheter-induced vascular injury of thalidomide and tamoxifen, 2 drugs with powerful anti-inflammatory, immunomodulatory, and antifibrotic effects, using an animal model that mimics the morphologic features of chronic allograft vasculopathy. Methods. Male Wistar rats subjected to balloon catheter carotid injury (INJ) were treated with thalidomide (100 mg/kg), or tamoxifen (10 mg/kg), or vehicle. Contralateral right carotid arteries were used as uninjured controls. Morphometric and immunohistochemical analyses were performed at 14 days postinjury. Results. Injured carotid arteries showed marked neointimal hyperplasia, which was significantly inhibited among animals treated with thalidomide or tamoxifen: neointimal/media ratios of 1.4 +/- 0.4 versus 0.2 +/- 0.1 versus 0.4 +/- 0.2, for INJ, INJ + Thalid, and INJ + Tamox; respectively (P < .001). The endothelial cell loss was significantly less pronounced among animals subjected to carotid balloon injury that were treated with thalidomide (24 +/- 14 vs 1 +/- 1 cells per section in INJ, respectively (P < .05). Therapy with either thalidomide or tamoxifen effectively maintained alpha-smooth muscle actin expression in the media, similar to uninjured arteries. In this setting, tamoxifen was additionally effective to prevent the migration of myofibroblasts in to the intima. Conclusion. Thalidomide and tamoxifen were effective to reduce neointimal hyperplasia secondary to vascular damage. The vasculoprotective effects of thalidomide were more pronounced to preserve endothelial cells, whereas tamoxifen inhibited smooth muscle cell migration and proliferation. A possible beneficial effect of combined therapy with thalidomide plus tamoxifen should be addressed in future studies.
Resumo:
Juvenile nasopharingeal angiofibroma (JNA) is a histologically benign locally aggressive tumor characterized by irregular vessels embedded. in a fibrous stroma. Excessive vascularity results in bleeding complications, and the inhibition of angiogenesis is a promising strategy for managing extensive JNA tumors. To better characterize the endothelial components of JNA, we aimed to evaluate markers of vascular differentiation and proliferation, such as friend leukemia integration-1 (FLI-1) and endoglin, lymphatic markers, including podoplanin and vascular endothelial growth factor receptor 3 (VEGFR3) and its cognate ligand VEGFC, GLUT-1, a diagnostic marker that discriminates between hemangiomas and vascular malformations, and two markers of tissue remodeling, stromelysin 3 (ST3) and secreted acid protein rich in cysteine (SPARC). Antigens were assessed immunohistochemically in vessels and stromal cells of JNA archival cases (n=22). JNA endothelial cells were positive for endoglin, VEGFC and FLI-1, whereas podoplanin and VEGFR3 were negative in all cases. Both endothelial cells and fibroblasts stained for ST3 and SPARC. GLUT-1 was investigated in JNA cases, in infantile hemangiomas (n=123) and in vascular malformations (n=135) as controls. JNAs and vascular malformations were GLUT-1-negative, while hemangiomas showed positive staining. The presence of markers of endothelial differentiation and proliferation highlighted the hyper-proliferative state of JNA vessels. The absence of podoplanin and VEGFR3 underscores their blood endothelial cell characteristic. The absence of GLUT-1 discriminates JNAs from hemangiomas. ST3 and SPARC up-regulation in endothelial cells and fibroblasts may contribute to a compensatory signaling for controlling angiogenesis. Some of these markers may eventually serve as therapeutic targets. Our results may aid in the understanding of JNA pathophysiology.
Resumo:
Background: Systemic sclerosis (SSc) is a multisystem disorder characterized by inflammation, fibrosis and vascular damage. The aim of this study was to evaluate the interactions between basement membrane disruption, endothelial injury and collagen V deposition on the vascular wall, as well as their association with pulmonary function tests in patients with SSc. Method: The endothelial apoptosis was assessed by TUNEL and electron microscopy, and quantified through the point-counting technique. To evaluate basement membrane integrity, laminin immunostaining and electron microscopy were used. Immunofluorescence and morphometric analysis were used to determine the amount of collagen V in the vascular walls in 23 open lung biopsies of patients with SSc without pulmonary hypertension. Normal lung tissue was obtained from five individuals who had died of traumatic injuries. Results: The apoptosis index in SSc was higher in the endothelial cells (13.83 +/- 6.83) when compared with the control (2.51 +/- 2.06) group (P < 0.001) and confirmed by electron microscopy. We observed an important disruption of the basement membrane on the vascular wall shown by discontinuous laminin immunostaining and electron microscopy. An increase in collagen V on the vascular wall of the SSc group was observed (45.28 +/- 13.21), when compared with control group (22.90 +/- 4.13, P < 0.001), and this difference was statistically significant. An inverse correlation was found between vital capacity, forced vital capacity, forced expiratory volume in 1 s, vascular collagen V and endothelial apoptosis (P < 0.05). Conclusions: We conclude that the endothelial apoptosis and vascular collagen V interaction reinforce the vascular pathway in the SSc pathogenesis. Further studies are needed to determine whether this relationship is causal or consequential. Please cite this paper as: Parra ER, Aguiar AC Jr, Teodoro WR, de Souza R, Yoshinari NH and Capelozzi VL. Collagen V and vascular injury promote lung architectural changes in systemic sclerosis. The Clinical Respiratory Journal 2009; 3: 135-142.
Resumo:
We hypothesized that bone marrow-derived mononuclear cells (BMDMC) would attenuate the remodeling process in a chronic allergic inflammation model. C57BL/6 mice were assigned to two groups. In OVA, mice were sensitized and repeatedly challenged with ovalbumin. Control mice (C) received saline under the same protocol. C and OVA were further randomized to receive BMDMC (2 x 10(6)) or saline intravenously 24 h before the first challenge. BMDMC therapy reduced eosinophil infiltration, smooth muscle-specific actin expression, subepithelial fibrosis, and myocyte hypertrophy and hyperplasia, thus causing a decrease in airway hyperresponsiveness and lung mechanical parameters. BMDMC from green fluorescent protein (GFP)-transgenic mice transplanted into GFP-negative mice yielded lower engraftment in OVA. BMDMC increased insulin-like growth factor expression, but reduced interleukin-5, transforming growth factor-beta, platelet-derived growth factor, and vascular endothelial growth factor mRNA expression. In conclusion, in the present chronic allergic inflammation model, BMDMC therapy was an effective pre-treatment protocol that potentiated airway epithelial cell repair and prevented inflammatory and remodeling processes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Anti-endothelial cells antibodies have been detected in numerous autoimmune and inflammatory diseases, including systemic lupus erythematous, rheumatoid arthritis, vasculitis and sarcoidosis. Anti-endothelial cells antibodies bind to endothelial cell antigens and induce endothelial damage. Their effects on the endothelial cell have been considered responsible, at least in part, by the vascular injury which occurs in these pathological conditions. Lupus (2009) 18, 1233-1238.
Resumo:
Aims Cysteine- and glycine-rich protein 3/muscle LIM-domain protein (CRP3/MLP) mediates protein-protein interaction with actin filaments in the heart and is involved in muscle differentiation and vascular remodelling. Here, we assessed the induction of CRP3/MLP expression during arterialization in human and rat veins. Methods and results Vascular CRP3/MLP expression was mainly observed in arterial samples from both human and rat. Using quantitative real time RT-PCR, we demonstrated that the CRP3/MLP expression was 10 times higher in smooth muscle cells (SMCs) from human mammary artery (h-MA) vs. saphenous vein (h-SV). In endothelial cells (ECs), CRP3/MLP was scarcely detected in either h-MA or h-SV. Using an ex vivo flow through system that mimics arterial condition, we observed induction of CRP3/MLP expression in arterialized h-SV. Interestingly, the upregulation of CRP3/MLP was primarily dependent on stretch stimulus in SMCs, rather than shear stress in ECs. Finally, using a rat vein in vivo arterialization model, early (1-14 days) CRP3/MLP immunostaining was observed predominantly in the inner layer and later (28-90 days) it appeared more scattered in the vessel layers. Conclusion Here we provide evidence that CRP3/MLP is primarily expressed in arterial SMCs and that stretch is the main stimulus for CRP3/MLP induction in veins exposed to arterial haemodynamic conditions.
Resumo:
Tick saliva contains molecules that are inoculated at the site of attachment on their hosts in order to modulate local immune responses and facilitate a successful blood meal. Bovines express heritable, contrasting phenotypes of infestations with the cattle tick, Rhipicephalus (Boophilus) microplus: breeds of Bos taurus indicus are significantly note resistant than those of Bos taurus taurus. Tick saliva may contain molecules that interfere with adhesion of leukocytes to endothelium and resistant hosts may mount an inflammatory profile that is more efficient to hamper the tick`s blood meal. We show in vitro that adhesion of peripheral blood mononuclear cells to monolayers of cytokine-activated bovine umbilical endothelial cells was significantly inhibited by tick saliva. The inflammatory response to bites of adults of R. microplus mounted by genetically resistant and susceptible bovine hosts managed in the same pasture was investigated in vivo. The inflammatory infiltrates and levels of message coding for adhesion molecules were measured in biopsies of tick-bitten and control skin taken when animals of both breeds were exposed to low and high tick infestations. Histological studies reveal that cutaneous reactions of resistant hosts to bites of adult ticks contained significantly more basophils and eosinophils compared with reactions of the susceptible breed. Expression of the adhesion molecules - intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1) and P-selectin - was higher in adult-infested skin of susceptible hosts undergoing low infestations compared to resistant hosts; when host was exposed to high infestations expression of these adhesion molecules was down-regulated in both phenotypes of infestations. Expression of leukocyte adhesion glycoprotein-1 (LFA-1) was higher in skin from susceptible hosts undergoing low or high infestations compared to resistant hosts. Conversely, higher levels of E-selectin, which promotes adhesion of memory T cells, were expressed in skin of resistant animals. This finding may explain the resistant host`s ability to mount more rapid and efficient secondary responses that limit hematophagy and infestations. The expression profiles observed for adhesion molecules indicate that there are differences in the kinetics of the inflammatory reactions mounted by resistant and susceptible hosts and the balance between tick and host is affected by the number of tick bites a host receives. We show that the contrasting phenotypes of infestations seen in bovines infested with R. microplus are correlated with differences in the cellular and molecular composition of inflammatory infiltrates elicited by bites with adult ticks. (C) 2009 Published by Elsevier B.V.
Resumo:
Background/Aims: The expression of cancer/testis antigens (CTAs) on additional normal tissues or stem cells may restrict their use as cancer targets. The objective of the present study was to evaluate the mRNA levels of some CTAs in a variety of tissues. Materials and Methods: mRNA of pericytes, fibroblasts and mesenchymal stem cells (MSCs) derived from adult and fetal tissues, human umbilical vein endothelial cells, MSC-derived adipocytes, selected normal tissues and control cancer cell lines (CLs) were extracted and quantitative polymerase chain reaction was performed for MAGED1, PRAME, CTAG1B, MAGEA3 and MAGEA4. Results: MAGED1 was expressed in all normal tissues and cells evaluated. CTAG1B was expressed at levels comparable to control CLs on MSCs derived from arterial, fetal skin, adipose tissue and saphenous vein, heart, brain and skin tissues. MAGEA4 was detected only in fibroblasts and differentiated adipocytes from MSCs, at levels comparable to the control CLs. Conclusion: The potential use of CTAs in immunotherapy should take into account the potential off-target effects on MSCs.
Resumo:
Leptospirosis is a widespread re-emerging zoonosis of human and veterinary concern. It has been shown that virulent leptospires protect themselves against the host`s innate immune system, a strategy that allows the bacteria to reach immunologically safe environments. Although extensive studies on host pathogen interactions have been performed, little is known on how leptospires deal with host immune attack. In a previous work, we demonstrated the ability of leptospires to bind human plasminogen (PLC), that after treatment with activators, conferred plasmin (PLA) activity on the bacteria surface. In this study, we show that the PLA activity associated to the outer surface of Leptospira could interfere with the host immune attack by conferring some evasion advantage during infection. We demonstrate that PLA-coated leptospires interfere with complement Ob and IgG depositions on the bacterial surface, probably through the degradation of these components, thus diminishing opsonization process. Similar decrease on the deposition was observed when normal and immune sera from patients diagnosed with leptospirosis were employed as a source of IgG. We believe that decreasing opsonization by PLA generation might be an important aspect of the leptospiral immune escape strategy and survival. To our knowledge, this is the first proteolytic activity of plasmin associated-Leptospira related to anti-opsonic properties reported to date. (C) 2011 Elsevier Ltd. All rights reserved.
Intravascular papillary endothelial hyperplasia: Report of 4 cases with immunohistochemical findings
Resumo:
Intravascular papillary endothelial hyperplasia (IPEH) is a benign endothelial proliferation, usually intravascular, that may mimic angiosarcoma. In this report, four new cases of IPEH involving the oral region are described. The affected sites were the lower lip, labial comissure and the submandibular region. After clinical evaluation, the complete removal of the lesions showed a circumscribed and soft mass. Histologically, the major feature was a reactive proliferation of endothelial cells composed of small papillary structures with hypocellular and hyalinized cores arising in an organized thrombus. Immunohistochemical staining for CD34 was strongly positive in endothelial cells. Vimentin and laminin immunolabelling were also consistent with a vascular origin. In order to verify the proliferative potential of the lesions, the Ki-67 antibody was used, revealing low percentage of labeled cells (<20%). No immunoreactivity for GLUT-1 was observed. Since the complete removal is curative, no additional treatment was necessary, and no signs of recurrence had been observed until now. Due to the particular features of IPEH, it is important for pathologists and clinicians to become familiar with this lesion. Additionally, the specific histological arrangement, including the absence of cellular pleomorphism, mitotic activity and necrosis, represents a guide to help in the differential diagnosis. Moreover, the vascular origin and the proliferative index should be assessed by immunohistochemistry in order to provide an accurate diagnosis.
Resumo:
Transformation of small avascular masses of tumor cells into rapidly progressive cancers is triggered by the angiogenic switch, a process that involves vascular endothelial growth factor (VEGF) signaling. We have shown that VEGF enhances the survival and angiogenic potential of endothelial cells by activating the Bcl-2-CXCL8 signaling axis. The purpose of this study was to evaluate the effect of a small-molecule inhibitor of VEGF receptors (PTK/ZK) on the initial stages of head and neck tumor angiogenesis. In vitro, PTK/ZK blocked head and neck tumor cell (OSCC3 or UM-SCC-17B)-induced Bcl-2 and CXCL8 expression in endothelial cells. Oral administration of PTK/ZK decreased xenograft head and neck tumor microvessel density, and inhibited Bcl-2 and CXCL8 expression in tumor-associated endothelial cells. Analysis of these data demonstrates that PTK/ZK blocks downstream targets of VEGF signaling in endothelial cells, and suggests that PTK/ZK may inhibit the angiogenic switch in head and neck tumors. Abbreviations: HDMEC, human dermal microvascular endothelial cells; VEGF, vascular endothelial growth factor; CXCL8, CXC ligand-8; PTK/ZK, PTK787/ZK222584.
Resumo:
Strong vascular endothelial growth factor-C (VEGF-C) expression has been correlated to occurrence of lymph-node metastases in patients with oral squamous cell carcinoma (OSCC). The incidence of occult lymph-node metastasis remains a decisive factor in the prognosis of patients with early OSCC. The aim of this study was to evaluate VEGF-C expression as a predictor of occult lymph-node metastasis in OSCC. Eighty-seven patients with primary OSCC arising in the tongue or floor of mouth, clinically T1N0M0 or T2N0M0, with (pN+) and without (pN0) occult lymph-node metastases were analyzed for VEGF-C expression by malignant cells. Occult lymph-node metastases (pN+) were detected in 22% of the 64 patients who were submitted to elective neck dissection. No statistically significant difference was found between OSCC with and without occult lymph-node metastasis in regard to VEGF-C immunoexpression by malignant cells and clinicopathologic features. Independently of VEGF-C expression, lymph-node metastasis (PN+) was the most significant prognostic factor for overall survival of patients with OSCC (p = 0.030). These findings indicate that isolated VEGF-C expression by malignant cells is not of predictive value for occult lymph-node metastasis in the early stages of OSCC.
Resumo:
An immunoperoxidase technique was used to examine IP-10 (interferon-gamma inducible protein 10), RANTES (regulated on activation normal T cell expressed and secreted), MCP-1 (monocyte chemoattractant protein-1), and MIP-1alpha (macrophage inflammatory protein-1alpha) in gingival biopsies from 21 healthy/gingivitis and 26 periodontitis subjects. The samples were placed into 3 groups according to the size of infiltrate. MIP-1alpha+ cells were more abundant than the other chemokines with few MCP-1+ cells. The mean percent MIP-1alpha+ cells was higher than the percent MCP-1+ cells (P = 0.02) in group 2 (intermediate size infiltrates) lesions from periodontitis subjects, other differences not being significant due to the large variations between tissue samples. Analysis of positive cells in relation to CD4/CD8 ratios showed that with an increased proportion of CD8+ cells, the mean percent MIP-1alpha+ cells was significantly higher in comparison with the mean percent RANTES+ and MCP-1+ cells (P < 0.015). Endothelial cells were MCP-1+ although positive capillaries were found on the periphery of infiltrates only. Keratinocyte expression of chemokines was weak and while the numbers of healthy/gingivitis and periodontitis tissue sections positive for IP-10, RANTES and MCP-1 reduced with increasing inflammation, those positive for MIP-1alpha remained constant for all groups. In conclusion, fewer leucocytes expressed MCP-1 in gingival tissue sections, however, the percent MIP-1alpha+ cells was increased particularly in tissues with increased proportions of CD8 cells and B cells with increasing inflammation and also in tissues with higher numbers of macrophages with little inflammation. Further studies are required to determine the significance of MIP-1alpha in periodontal disease.