890 resultados para fundamental movement skills
Resumo:
Dislocation movement in N-doped Czochralski silicon (Cz-Si) was surveyed by four point bend method. Dislocation movement velocities in Cz-Si doped with nitrogen, with both nitrogen and antimony, and with only antimony were investigated. The order of measured dislocation movement velocities, at 700 degrees C less than or equal to T less than or equal to 800 degrees C and under resolved stress sigma=4.1 kg/mm(2), was V-Sb.O > V-n.Sb.O>V-N.O. The experiments showed that nigtrogen doping could retard the movement of dislocations.
Resumo:
The transport phenomenon of drops or bubbles is a very important topic in fundamental hydrodynamics research and practical applications such as material processing and the chemical engineering. In microgravity environment, if drops or bubbles stay in a continuous phase with non-uniform temperature ¯eld, they will start to move as a result of the variance of the interface tension. This kind of movement is called the Marangoni migration. This review tries to sum up the main results in this ¯eld on theoretical analysis, numerical simulations and experiments. So far the theoretical analysis is still limited to the linear or weak nonlinear steady questions, while the current numerical simulations can already obtain the time- dependent process of the bubble/drop migration when the e®ect of heat convection is small. For strong heat convection problem, or when the Marangoni number is bigger than 100, no numerical result is in consistence with those of experiments so far. Some of the lastest numerical results are shown when heat convection is strong, and the main di®erence between strong and weak heat convection is analyzed. Finally, we also discuss the main unresolved problems in this ¯eld and some possible directions in the future.
Resumo:
A three-dimensional CFD-DEM model is proposed to investigate the aeolian sand movement. The results show that the mean particle horizontal velocity can be expressed by a power function of heights. The probability distribution of the impact and lift-off velocities of particles can be described by a log-normal function, and that of the impact and lift-off angles can be expressed by an exponential function. The probability distribution of particle horizontal velocity at different heights can be described as a lognormal function, while the probability distribution of longitudinal and vertical velocity can be described as a normal function. The comparison with previous two-dimensional calculations shows that the variations of mean particle horizontal velocity along the heights in two-dimensional and three-dimensional models are similar. However, the mean particle density of the two-dimensional model is larger than that in reality, which will result in the overestimation of sand transportation rate in the two-dimensional calculation. The study also shows that the predicted probability distributions of particle velocities are in good agreement with the experimental results.
Resumo:
In this paper, we prepared "dual-parallel-channel" shape-gradient surfaces, on which water droplets can reversibly and orientedly move between two adjacent pools under the guidance of an external voltage. Furthermore, it is found that the motion speed is governed by several parameters, including bath condition, gradient angle, and the working voltage. In this self-transportation process of water droplets, the external voltage works like a traffic light, which can give "moving", "stopping", "turning" and "straight-going" signals to the Water droplets.
Resumo:
Internal and surface waves generated by the deformations of the solid bed in a two layer fluid system of infinite lateral extent and uniform depth are investigated. An integral solution is developed for an arbitrary bed displacement on the basis of a linear approximation of the complete description of wave motion using a transform method (Laplace in time and Fourier in space) analogous to that used to study the generation of tsunamis by many researchers. The theoretical solutions are presented for three interesting specific deformations of the seafloor; the spatial variation of each seafloor displacement consists of a block section of the seafloor moving vertically either up or down while the time-displacement history of the block section is varied. The generation process and the profiles of the internal and surface waves for the case of the exponential bed movement are numerically illustrated, and the effects of the deformation parameters, densities and depths of the two layers on the solutions are discussed. As expected, the solutions derived from the present work include as special cases that obtained by Kervella et al. [Theor Comput Fluid Dyn 21:245-269, 2007] for tsunamis cased by an instantaneous seabed deformation and those presented by Hammack [J Fluid Mech 60:769-799, 1973] for the exponential and the half-sine bed displacements when the density of the upper fluid is taken as zero.
Resumo:
Considering the characteristics of the time and space scales of the eddies we established a quasi-static and quasi-geostrophic model to describe their variation and movement in shelf slope water. The analytical solution revealed the main properties of the variation: slow expansion and fast stagnation processes and the law of the eddy motion affected under the background field. All theoretical results are proved by satellite image measurements.
Resumo:
Rockmass movement due to mining steep metallic ore body is a considerable question in the surface movement and deformation issue caused by underground mining. Research on coal mining induced rockmass movement and its prediction problem have been performed for a long-term, and have achieved great progress at home and abroad. However, the rockmass movement caused by mining steep metal mine is distinctivly different from coal seam mining.. Existing surface movement laws and deformation prediction methods are not applicable to the rockmass movement caused by mining steep metal mine. So far the home and abroad research to this theory is presently at an early stage, and there isn’t mature theory or practical prediction method, which made a great impact on production. In this paper, the research object—Jinchuan nickel mine, which is typical steep metal mine, characterized by complex geological conditions, developed faults, cracked rockmass, high geostress, and prominent engineering stability problems. In addition, backfill mining method is used in the mine, the features of rockmass movement caused by this mining method are also different from other mining methods. In this paper, the laws of rock mass movement, deformation and destroy mechanism, and its prediction were analyzed based on the collection of data, detailed in-sit engineering geology survey, ground movement monitoring by GPS, theoretical analysis and numerical simulation. According to the GPS monitoring of ground surface movement, ground subsidence basin with apparent asymmetry is developing, the influence scope is larger in the upper faulted block than in the lower faulted block, and the center of ground movement is moving along the upper faulted block direction with increasing depth of mining. During the past half and seven years, the largest settlement has amounted to 1287.5mm, and corresponding horizontal displacement has amounted to 664.6mm. On the ground surface, two fissure belts show a fast-growing trend of closure. To sum up, mining steep metal mine with backfill method also exist the same serious problem of rockmass movement hazards. Fault, as a low intensity zone in rockmass, when it located within the region of mining influence, the change of potential energy mainly consumed in fault deformation associated with rockmass structure surface friction, which is the essence of displacement and stress barrier effects characterized by fault rupture zone. when steep fault located in the tensile deformation region incurred by underground excavation, no matter excavation in hangingwall or in footwall of the fault, there will be additional tensile stress on the vertical fault plane and decrease in the shear strength, and always showing characteristics of normal fault slip, which is the main reason of fault escarpment appeared on the ground surface. The No.14 shaft deformation and failure is triggered by fault activation, which showed with sidewall move, rupture, and break down features as the main form of a concentrated expression of fault effects. The size and orientation of principal stress in surrounding rock changed regularly with mining; therefore, roadway deformation and damage at different stages have different characteristics and distribution models. During the process of mining, low-intensity weak structures surface always showed the most obvious reaction, accompany with surface normal stress decrease and shear strength bring down, to some extent, occurred with relative slide and deformation. Meanwhile, the impact of mining is a relatively long process, making the structure surface effect of roadway deformation and damage more prominent than others under the influence of mining. Roadway surrounding rockmass deformation caused by the change of strain energy density field after excavation mainly belongs to elastic deformation, and the correspondented damage mainly belongs to brittle rupture, in this circumstance, surrounding rockmass will not appear large deformation. The large deformation of surrounding rockmass can only be the deformation associated with structure surface friction or the plastic deformation of itself, which mainly caused by the permanent self-weigh volume force,and long-term effect of mining led to the durability of this deformation Good pitting fill effect and supporting effect of backfill, as well as the friction of rockmass structure surface lead to obvious macro-rockmass movement with long-lag characteristics. In addition, the loss of original intensity and new structure surface arisen increased flexibility in rockmass and fill deformation in structure surface, which made the time required for rockmass potential energy translate into deformation work associated with plastic deformation and structure surface friction consumed much, and to a large extent, eliminated the time needed to do those plastic work during repeated mining, all of which are the fundamental reason of rockmass movement aftereffect more significant than before. Mining steep deposits in high tectonic stress area and in gravity stress area have different movement laws and deformation mechanism. The steep deposit, when the vertical size of the mining areas is smaller than the horizontal size of the orebody, no matter mining in gravity stress area or in high tectonic stress area, they have similar features of ground movement with mining horizontal orebody; contrarily, there will appear double settlement centers on the ground surface under the condition of mining in high tectonic stress area, while there will always be a single center under the other condition. Meanwhile the ground movement lever, scale of mining influence area and macro features of ground movement, deformation and fracture are also different from mining in gravity stress area, and the fundamental reason lies in the impact of orientation of the maximum principal stress on rock movement features in in-site rock stress field. When mining thick and steep deposit, the ground surface movement and deformation characteristic curves are significantly different from excavating the horizontal ore bed and thin steep deposit. According to the features of rockmass movement rate, the development process of mining-induced rockmass movement is divided into three stages: raising stage, steadily stage and gradually decay stage. Considering the actual exploitation situation, GPS monitoring results and macro-characteristics of surface movement, the current subsidence pattern of Jinchuan No.2 mine is in the early stage of development. Based on analysis of surface movement rate, surface subsidence rate increase rapidly when mining in double lever at the same time, and reach its peak until the exploitation model ended. When double lever mining translate into single, production decreased, surface subsidence rate suddenly start to reduce and maintain a relatively low value, and the largest subsidence center will slowly move along with the hangingwall ore body direction with increasing depth of mining, at the same time, the scope and extent of subsidence in footwall ore body will begin magnify, and a sub-settlement center will appear on ground surface, accompanied with the development and closure trend of ground fissure, the surrounding rockmass of shaft and roadway will be confronted to more frequent and severe deformation and failure, and which will have a negative impact on the overall stability of No.2 mine mining. On the premise of continuity of rockmass movement, gray system model can be used in ground rockmass movement prediction for good results. Under the condition of backfill mining step by step, the loose effect of compact status of the hard, broken rockmass led to lower energy release rate, although surrounding rockmass has high elastic energy, loose and damage occurred in the horizontal ore body, which made the mining process safety without any large geological hazards. During the period of mining the horizontal ore body to end, in view of its special “residual support role”, there will be no large scale rockmass movement hazards. Since ground surface movement mainly related to the intensity of mining speed and backfill effect, on the premise of constant mining speed, during the period of mining the horizontal ore body to end, the rate of ground surface rockmass movement and deformation won’t have sudden change.
Resumo:
2010
Resumo:
2002