964 resultados para film stack design
Resumo:
The LiteSteel Beam (LSB) is a new hollow flange section with a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. It is subjected to lateral distortional buckling when used as flexural members, which reduces its member moment capacity. An investigation into the flexural behaviour of LSBs using experiments and numerical analyses led to the development of new design rules for LSBs subject to lateral distortional buckling. However, the comparison of moment capacity results with the new design rules showed that they were conservative for some LSB sections while slightly unconservative for others due to the effects of section geometry. It is also unknown whether these design rules are applicable to other hollow flange sections such as hollow flange beams (HFB). This paper presents the details of a study into the lateral distortional buckling behaviour of hollow flange sections such as LSBs, HFBs and their variations. A geometrical parameter defined as the ratio of flange torsional rigidity to the major axis flexural rigidity of the web (GJf/EIxweb) was found to be a critical parameter in evaluating the lateral distortional buckling behaviour and moment capacities of hollow flange sections. New design rules were therefore developed by using a member slenderness parameter modified by K, where K is a function of GJf/EIxweb. The new design rules based on the modified slenderness parameter were found to be accurate in calculating the moment capacities of not only LSBs and HFBs, but also other types of hollow flange sections.
Resumo:
The LiteSteel Beam (LSB) is a new hollow flange channel section developed using a patented dual electric resistance welding and cold-forming process. It has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a slender web, and is commonly used as flexural members. However, the LSB flexural members are subjected to a relatively new lateral distortional buckling mode, which reduces their moment capacities. Unlike lateral torsional buckling, the lateral distortional buckling of LSBs is characterised by simultaneous lateral deflection, twist and cross sectional change due to web distortion. Therefore a detailed investigation into the lateral buckling behaviour of LSB flexural members was undertaken using experiments and finite element analyses. This paper presents the details of suitable finite element models developed to simulate the behaviour and capacity of LSB flexural members subject to lateral buckling. The models included all significant effects that influence the ultimate moment capacities of such members, including material inelasticity, lateral distortional buckling deformations, web distortion, residual stresses, and geometric imperfections. Comparison of elastic buckling and ultimate moment capacity results with predictions from other numerical analyses and available buckling moment equations, and experimental results showed that the developed finite element models accurately predict the behaviour and moment capacities of LSBs. The validated model was then used in a detailed parametric study that produced accurate moment capacity data for all the LSB sections and improved design rules for LSB flexural members subject to lateral distortional buckling.
Resumo:
Cold-formed steel beams are increasingly used as floor joists and bearers in buildings. Their behaviour and moment capacities are influenced by lateral-torsional buckling when they are not laterally restrained adequately. Past research on lateral-torsional buckling has concentrated on hot-rolled steel beams. Hence a numerical study was undertaken to investigate the lateral-torsional buckling behaviour of simply supported cold-formed steel lipped channel beams subjected to uniform bending. For this purpose a finite element model was developed using ABAQUS and its accuracy was verified using available numerical and experimental results. It was then used in a detailed parametric study to simulate the lateral-torsional buckling behaviour and capacity of cold-formed steel beams under varying conditions. The moment capacity results were compared with the predictions from the current design rules in many cold-formed steel codes and suitable recommendations were made. European design rules were found to be conservative while Australian/New Zealand and North American design rules were unconservative. Hence the moment capacity design equations in these codes were modified in this paper based on the available finite element analysis results. This paper presents the details of the parametric study, recommendations to current design rules and the new design rules proposed in this research for lateral-torsional buckling of cold-formed steel lipped channel beams.
Resumo:
The LiteSteel Beam (LSB) is an innovative cold-formed steel hollow flange section. When used as floor joists, the LSB sections require holes in the web to provide access for various services. In this study a detailed investigation was undertaken into the elastic lateral distortional buckling behaviour of LSBs with circular web openings subjected to a uniform moment using finite element analysis. Validated ideal finite element models were used first to study the effect of web holes on their elastic lateral distortional buckling behaviour. An equivalent web thickness method was then proposed using four different equations for the elastic buckling analyses of LSBs with web holes. It was found that two of them could be successfully used with approximate numerical models based on solid web elements with an equivalent reduced thickness to predict the elastic lateral distortional buckling moments.
Resumo:
‘Nobody knows anything’, said William Goldman of studio filmmaking. The rule is ever more apt as we survey the radical changes that digital distribution, along with the digitisation of production and exhibition, is wreaking on global film circulation. Digital Disruption: Cinema Moves On-line helps to make sense of what has happened in the short but turbulent history of on-line distribution. It provides a realistic assessment of the genuine and not-so-promising methods that have been tried to address the disruptions that moving from ‘analogue dollars’ to ‘digital cents’ has provoked in the film industry. Paying close attention to how the Majors have dealt with the challenges – often unsuccessfully – it focuses as much attention on innovations and practices outside the mainstream. Throughout, it is alive to, and showcases, important entrepreneurial innovations such as Mubi, Jaman, Withoutabox and IMDb. Written by leading academic commentators that have followed the fortunes of world cinema closely and passionately, as well as experienced hands close to the fluctuating fortunes of the industry, Digital Disruption: Cinema Moves On-line is an indispensable guide to great changes in film and its audiences.
Resumo:
Local climate is a critical element in the design of buildings. In this paper, ten years of historical weather data in Australia's all eight capital cities are analyzed to characterize the variation profiles of climatic variables. The method of descriptive statistics is employed. Either the pattern of cumulative distribution and/or the profile of percentage distribution are used to graphically illustrate the similarity and difference between different study locations. It is found that although the weather variables vary with different locations, except for the extreme parts, there is often a good, nearly linear relation between weather variable and its cumulative percentage for the majority of middle part. The implication of these extreme parts and the slopes of the middle parts on building design is also discussed.
Resumo:
As global warming entails new conditions for the built environment, the thermal behavior of existing air conditioned office buildings, which are typically designed based on current weather data, may also change. Through building computer simulations, this paper evaluates the impact of global warming on the design and performance of air-conditioned office buildings in Australia, including the increased cooling loads imposed by potential global warming and probable indoor temperature increases due to possible undersized air-conditioning system, as well as the possible change in energy use and CO2 emission of Australian office buildings. It is found that the existing office buildings would generally be able to adapt to the increasing warmth of 2030 year Low and High scenarios projections and 2070 year Low scenario projection. However, for the 2070 year High scenario, the study indicates that the existing office buildings, in all capital cities except for Hobart, will suffer from overheating problems. If the energy source is assumed to be the electricity, it is found that in comparison with current weather scenario, the increased energy uses would translate into the increase of CO2 emissions by 0 to 34.6 kg CO2 equivalent/m2, varying with different future weather scenarios and with different locations.
Resumo:
The Social Web is a torrent of real-time information and an emerging discipline is now focussed on harnessing this information flow for analysis of themes, opinions and sentiment. This short paper reports on early work on designing better user interfaces for end users in manipulating the outcomes from these analysis engines.
Resumo:
"Bouncing Back: Resilient Design for Brisbane" was an opportunity for QUT students to communicate their inspiring design responses to adversity, to the larger Brisbane community. The exhibition demonstrates new and innovative ways of thinking about our cities, and how they are built to be resilient and to suit extreme environmental conditions. The challenge for architecture students is to address the state of architecture as a reflection of today's world and to consider how design fits into the 21st century. Students have explored notions of 'Urban Resilience' from multiple perspectives, including emergency design while facing flooding, flood proof housing and urban designs.
Resumo:
Designing Well: Vegetarianism Sustainability and Interaction Design, focuses on the field of Interaction Design and is an exploration of how design can be reconsidered by employing a different critical lens – that of vegetarianism. By extending the eating analogy to design, other aspects of practice can be reframed and reviewed. This is done through a survey of different ways designers and artists have approached the problems of electricity use. This survey begins by looking at a number of functional products that are currently on the market, and then turns to consider a range of alternate approaches taken in research, art and critical design. The second half of the paper can be considered as a form of contextual review, as a survey of different approaches artists and designers employ to address a specific issue in and through practice. This ranges from pragmatic design to critical and radical interventions.
Resumo:
Here we present a sequential Monte Carlo (SMC) algorithm that can be used for any one-at-a-time Bayesian sequential design problem in the presence of model uncertainty where discrete data are encountered. Our focus is on adaptive design for model discrimination but the methodology is applicable if one has a different design objective such as parameter estimation or prediction. An SMC algorithm is run in parallel for each model and the algorithm relies on a convenient estimator of the evidence of each model which is essentially a function of importance sampling weights. Other methods for this task such as quadrature, often used in design, suffer from the curse of dimensionality. Approximating posterior model probabilities in this way allows us to use model discrimination utility functions derived from information theory that were previously difficult to compute except for conjugate models. A major benefit of the algorithm is that it requires very little problem specific tuning. We demonstrate the methodology on three applications, including discriminating between models for decline in motor neuron numbers in patients suffering from neurological diseases such as Motor Neuron disease.
Resumo:
The paper investigates a detailed Active Shock Control Bump Design Optimisation on a Natural Laminar Flow (NLF) aerofoil; RAE 5243 to reduce cruise drag at transonic flow conditions using Evolutionary Algorithms (EAs) coupled to a robust design approach. For the uncertainty design parameters, the positions of boundary layer transition (xtr) and the coefficient of lift (Cl) are considered (250 stochastic samples in total). In this paper, two robust design methods are considered; the first approach uses a standard robust design method, which evaluates one design model at 250 stochastic conditions for uncertainty. The second approach is the combination of a standard robust design method and the concept of hierarchical (multi-population) sampling (250, 50, 15) for uncertainty. Numerical results show that the evolutionary optimization method coupled to uncertainty design techniques produces useful and reliable Pareto optimal SCB shapes which have low sensitivity and high aerodynamic performance while having significant total drag reduction. In addition,it also shows the benefit of using hierarchical robust method for detailed uncertainty design optimization.
Resumo:
The participation of the community broadcasting sector in the development of digital radio provides a potentially valuable opportunity for non-market, end user-driven experimentation in the development of these new services in Australia. However this development path is constrained by various factors, some of which are specific to the community broadcasting sector and others that are generic to the broader media and communications policy, industrial and technological context. This paper filters recent developments in digital radio policy and implementation through the perspectives of community radio stakeholders, obtained through interviews, to describe and analyse these constraints. The early stage of digital community radio presented here is intended as a baseline for tracking the development of the sector as digital radio broadcasting develops. We also draw upon insights from scholarly debates about citizens media and participatory culture to identify and discuss two sets of opportunities for social benefit that are enabled by the inclusion of community radio in digital radio service development. The first arises from community broadcasting’s involvement in the propagation of the multi-literacies that drive new digital economies, not only through formal and informal multi- and trans-media training, but also in the ‘co-creative’ forms of collaborative and participatory media production that are fostered in the sector. The second arises from the fact that community radio is uniquely placed — indeed charged with the responsibility — to facilitate social participation in the design and operation of media institutions themselves, not just their service outputs.
Resumo:
Purpose: The construction industry is well known for its high accident rate and many practitioners consider a preventative approach to be the most important means of bringing about improvements. This paper addresses previous research and the weaknesses of existing preventative approaches and a new application is described and illustrated involving the use of a multi-dimensional simulation tool - Construction Virtual Prototyping (CVP). Methodology: A literature review was conducted to investigate previous studies of hazard identification and safety management and to develop the new approach. Due to weaknesses in current practice, the research study explored the use of computer simulation techniques to create virtual environments where users can explore and identify construction hazards. Specifically, virtual prototyping technology was deployed to develop typical construction scenarios in which unsafe or hazardous incidents occur. In a case study, the users’ performance was evaluated their responses to incidents within the virtual environment and the effectiveness of the computer simulation system established though interviews with the safety project management team. Findings: The opinions and suggestions provided by the interviewees led to the initial conclusion that the simulation tool was useful in assisting the safety management team’s hazard identification process during the early design stage. Originality: The research introduces an innovative method to support the management teams’ reviews of construction site safety. The system utilises three-dimensional modelling and four-dimensional simulation of worker behaviour, a configuration that has previously not been employed in construction simulations. An illustration of the method’s use is also provided, together with a consideration of its strengths and weaknesses.