944 resultados para excess enthalpy of solution


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Imazapyr has presented excellent results in controlling coppices in stand reforms of eucalypt forests, despite differences in the efficacy levels. To find out whether these different responses are caused by the genetic variability of the cultivated materials, two experiments were carried out under greenhouse conditions with different imazapyr doses in a hydroponic system in plastic vases containing 2,500 mL solution. The clones IEF-1 (Eucalyptus grandis x Eucalyptus sp. hybrid), GE 463 (E. urophylla x E. grandis), and MN 445 (E. grandis x Eucalyptus sp. hybrid) were used in the first assay, and IEF-1, IEF2 (E. grandis x E. urophylla) x Eucalyptus sp. hybrid) and the clones 129 and 7182 (E. grandis x Eucalyptus sp. hybrids) in the second assay. Thirty days after transplanting the seedlings to a nutritive solution, imazapyr was applied to the solution at doses of 0.00, 0.05, 0.10, 0.20, 0.40, 0.80, 1.60 and 3.20 muL L-1. Clone GE 463 proved to be more tolerant to imazapyr than clones IEF-1 and MN 445 in the first assay; however, in the second, clone 7182 was the most tolerant. Thus, doses should also be differentiated when controlling coppices, according to the cultivated clone.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The potential of three macrophytes, Azolla caroliniana, Salvinia minima, and Lemna gibba was assessed in this study to select plants for use in environmental remediation contaminated with atrazine. Experiments were carried out in a greenhouse over six days in pots containing Hoagland 0.25 strength nutritive solution at the following atrazine concentrations: 0; 0.01; 0.1; 1.0; 10.0 mg L-1. Decrease in biomass accumulation was observed in the three macrophytes, as well as toxic effects evidenced by the symptomatology developed by the plants which caused their deaths. The chlorosis and necrosis allowed to observe in the plants the high sensitivity of the three species to the herbicide. Plants presented low potential for removal of atrazine in solution when exposed to low concentrations of the herbicide. However, at the 10.0 mg L-1 atrazine concentration, L. gibba and A. caroliniana showed potential to remove the herbicide from the solution (0.016 and 0.018 mg atrazine per fresh mass gram, respectively). This fact likely resulted from the processes of atrazine adsorption by the dead material. The percentage of atrazine removed from the solution by the plants decreased when the plants were exposed to high concentrations of the pollutant. Azolla caroliniana, S. minima, and L. gibba were not effective in removing the herbicide from solution. The use of these species to remedy aquatic environments was shown to be limited.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The potential of three aquatic macrophytes, Azoll caroliniana, Salvinia minima and Lemna gibba, was evaluated in this work aimed at selection of plants to be used in remediation of environments contaminated by arsenic (As). The experiments were carried out in a greenhouse during six days in pots containing Hoagland solution (¼ ionic strength) at As concentrations of 0.5; 2.5 and 5.0 mg L-1. The three species showed greater As accumulation as the concentration of the metalloid in solution increased. However, a reduction was detected in fresh and dry mass gain when the plants were exposed to high As concentrations. The macrophytes showed differences in efficiency of removal of As in solution. A. caroliniana, S. minima and L. gibba accumulated, on average, 0.130; 0.200; and 1.397 mg mDM-1, respectively, when exposed to 5.0 mg L-1 of As. The macrophytes absorbed a greater quantity of As in solution with low phosphate content. The greater As concentration in L. gibba tissues lowered the chlorophyll and carotenoid contents as shown by the high chlorosis incidence. Lemna gibba also exhibited a decrease in leaf size, with the total chlorophyll and carotenoid synthesis not being affected by As in A. caroliniana. This species exhibited purplish leaves with high concentration of anthocyanin, whose presence suggested association to phosphate deficiency. Marginal necrosis occurred on S. minima floating leaves, with the released daughter-plants not showing any visual symptoms during the treatment. The percentage of As removed from the solution decreased when the plants were exposed to high concentrations of the pollutant. Among the three species studied, only L. gibba could be considered an As hyper-accumulator. The use of this plant species for remediation of aquatic environments was shown to be limited and requires further investigation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study examines the excess returns provided by G10 currency carry trading during the Euro era. The currency carry trade has been a popular trade throughout the past decades offering excess returns to investors. The thesis aims to contribute to existing research on the topic by utilizing a new set of data for the Euro era as well as using the Euro as a basis for the study. The focus of the thesis is specifically on different carry trade strategies’ performance, risk and diversification benefits. The study finds proof of the failure of the uncovered interest rate parity theory through multiple regression analyses. Furthermore, the research finds evidence of significant diversification benefits in terms of Sharpe ratio and improved return distributions. The results suggest that currency carry trades have offered excess returns during 1999-2014 and that volatility plays an important role in carry trade returns. The risk, however, is diversifiable and therefore our results support previous quantitative research findings on the topic.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The steel industry produces, besides steel, also solid mineral by-products or slags, while it emits large quantities of carbon dioxide (CO2). Slags consist of various silicates and oxides which are formed in chemical reactions between the iron ore and the fluxing agents during the high temperature processing at the steel plant. Currently, these materials are recycled in the ironmaking processes, used as aggregates in construction, or landfilled as waste. The utilization rate of the steel slags can be increased by selectively extracting components from the mineral matrix. As an example, aqueous solutions of ammonium salts such as ammonium acetate, chloride and nitrate extract calcium quite selectively already at ambient temperature and pressure conditions. After the residual solids have been separated from the solution, calcium carbonate can be precipitated by feeding a CO2 flow through the solution. Precipitated calcium carbonate (PCC) is used in different applications as a filler material. Its largest consumer is the papermaking industry, which utilizes PCC because it enhances the optical properties of paper at a relatively low cost. Traditionally, PCC is manufactured from limestone, which is first calcined to calcium oxide, then slaked with water to calcium hydroxide and finally carbonated to PCC. This process emits large amounts of CO2, mainly because of the energy-intensive calcination step. This thesis presents research work on the scale-up of the above-mentioned ammonium salt based calcium extraction and carbonation method, named Slag2PCC. Extending the scope of the earlier studies, it is now shown that the parameters which mainly affect the calcium utilization efficiency are the solid-to-liquid ratio of steel slag and the ammonium salt solvent solution during extraction, the mean diameter of the slag particles, and the slag composition, especially the fractions of total calcium, silicon, vanadium and iron as well as the fraction of free calcium oxide. Regarding extraction kinetics, slag particle size, solid-to-liquid ratio and molar concentration of the solvent solution have the largest effect on the reaction rate. Solvent solution concentrations above 1 mol/L NH4Cl cause leaching of other elements besides calcium. Some of these such as iron and manganese result in solution coloring, which can be disadvantageous for the quality of the PCC product. Based on chemical composition analysis of the produced PCC samples, however, the product quality is mainly similar as in commercial products. Increasing the novelty of the work, other important parameters related to assessment of the PCC quality, such as particle size distribution and crystal morphology are studied as well. As in traditional PCC precipitation process, the ratio of calcium and carbonate ions controls the particle shape; a higher value for [Ca2+]/[CO32-] prefers precipitation of calcite polymorph, while vaterite forms when carbon species are present in excess. The third main polymorph, aragonite, is only formed at elevated temperatures, above 40-50 °C. In general, longer precipitation times cause transformation of vaterite to calcite or aragonite, but also result in particle agglomeration. The chemical equilibrium of ammonium and calcium ions and dissolved ammonia controlling the solution pH affects the particle sizes, too. Initial pH of 12-13 during the carbonation favors nonagglomerated particles with a diameter of 1 μm and smaller, while pH values of 9-10 generate more agglomerates of 10-20 μm. As a part of the research work, these findings are implemented in demonstrationscale experimental process setups. For the first time, the Slag2PCC technology is tested in scale of ~70 liters instead of laboratory scale only. Additionally, design of a setup of several hundreds of liters is discussed. For these purposes various process units such as inclined settlers and filters for solids separation, pumps and stirrers for material transfer and mixing as well as gas feeding equipment are dimensioned and developed. Overall emissions reduction of the current industrial processes and good product quality as the main targets, based on the performed partial life cycle assessment (LCA), it is most beneficial to utilize low concentration ammonium salt solutions for the Slag2PCC process. In this manner the post-treatment of the products does not require extensive use of washing and drying equipment, otherwise increasing the CO2 emissions of the process. The low solvent concentration Slag2PCC process causes negative CO2 emissions; thus, it can be seen as a carbon capture and utilization (CCU) method, which actually reduces the anthropogenic CO2 emissions compared to the alternative of not using the technology. Even if the amount of steel slag is too small for any substantial mitigation of global warming, the process can have both financial and environmental significance for individual steel manufacturers as a means to reduce the amounts of emitted CO2 and landfilled steel slag. Alternatively, it is possible to introduce the carbon dioxide directly into the mixture of steel slag and ammonium salt solution. The process would generate a 60-75% pure calcium carbonate mixture, the remaining 25-40% consisting of the residual steel slag. This calcium-rich material could be re-used in ironmaking as a fluxing agent instead of natural limestone. Even though this process option would require less process equipment compared to the Slag2PCC process, it still needs further studies regarding the practical usefulness of the products. Nevertheless, compared to several other CO2 emission reduction methods studied around the world, the within this thesis developed and studied processes have the advantage of existing markets for the produced materials, thus giving also a financial incentive for applying the technology in practice.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Immunoglobulin G (IgG) of excellent quality for intravenous use was obtained from the cryosupernatant of human plasma by a chromatographic method based on a mixture of ion-exchange, DEAE-Sepharose FF and arginine Sepharose 4B affinity chromatography and a final purification step by Sephacryl S-300 HR gel filtration. The yield of 10 experimental batches produced was 3.5 g IgG per liter of plasma. A solvent/detergent combination of 1% Tri (n-butyl) phosphate and 1% Triton X-100 was used to inactivate lipid-coated viruses. Analysis of the final product (5% liquid IgG) based on the mean for 10 batches showed 94% monomers, 5.5% dimers and 0.5% polymers and aggregates. Anticomplementary activity was 0.3 CH50/mg IgG and prekallikrein activator levels were less than 5 IU/ml. Stability at 37ºC for 30 days in the liquid state was satisfactory. IgG was stored in flasks (2.5 g/flask) at 4 to 8ºC. All the characteristics of the product were consistent with the requirements of the 1997 Pharmacopée Européenne.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis focuses on the development of sustainable industrial architectures for bioenergy based on the metaphors of industrial symbiosis and industrial ecosystems, which imply exchange of material and energy side-flows of various industries in order to improve sustainability of those industries on a system level. The studies on industrial symbiosis have been criticised for staying at the level of incremental changes by striving for cycling waste and by-flows of the industries ‘as is’ and leaving the underlying industry structures intact. Moreover, there has been articulated the need for interdisciplinary research on industrial ecosystems as well as the need to extend the management and business perspectives on industrial ecology. This thesis addresses this call by applying a business ecosystem and business model perspective on industrial symbiosis in order to produce knowledge on how industrial ecosystems can be developed that are sustainable environmentally and economically. A case of biogas business is explored and described in four research papers and an extended summary that form this thesis. Since the aim of the research was to produce a normative model for developing sustainable industrial ecosystems, the methodology applied in this research can be characterised as constructive and collaborative. A constructive research mode was required in order to expand the historical knowledge on industrial symbiosis development and business ecosystem development into the knowledge of what should be done, which is crucial for sustainability and the social change it requires. A collaborative research mode was employed through participating in a series of projects devoted to the development of a biogas-for-traffic industrial ecosystem. The results of the study showed that the development of material flow interconnections within industrial symbiosis is inseparable from larger business ecosystem restructuring. This included a shift in the logic of the biogas and traffic fuel industry and a subsequent development of a business ecosystem that would entail the principles of industrial symbiosis and localised energy production and consumption. Since a company perspective has been taken in this thesis, the role of an ecosystem integrator appeared as a crucial means to achieve the required industry restructuring. This, in turn, required the development of a modular and boundary-spanning business model that had a strong focus on establishing collaboration among ecosystem stakeholders and development of multiple local industrial ecosystems as part of business growth. As a result, the designed business model of the ecosystem integrator acquired the necessary flexibility in order to adjust to local conditions, which is crucial for establishing industrial symbiosis. This thesis presents a normative model for the development of a business model required for creating sustainable industrial ecosystems, which contributes to approaches at the policy-makers’ level, proposed earlier. Therefore, this study addresses the call for more research on the business level of industrial ecosystem formation and the implications for the business models of the involved actors. Moreover, the thesis increases the understanding of system innovation and innovation in business ecosystems by explicating how business model innovation can be the trigger for achieving more sustainable industry structures, such as those relying on industrial symbiosis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effects of various hypertonic solutions on the intraventricular conduction, ventricular repolarization and the arrhythmias caused by the intravenous (iv) injection of bupivacaine (6.5 mg/kg) were studied in sodium pentobarbital-anesthetized mongrel dogs. Hypertonic solutions, given iv 5 min before bupivacaine, were 7.5% (w/v) NaCl, 5.4% (w/v) LiCl, 50% (w/v) glucose (2,400 mOsm/l, 5 ml/kg), or 20% (w/v) mannitol (1,200 mOsm/l, 10 ml/kg). Bupivacaine induced severe arrhythmias and ventricular conduction and repolarization disturbances, as reflected by significant increases in QRS complex duration, HV interval, IV interval and monophasic action potential duration, as well as severe hemodynamic impairment. Significant prevention against ventricular electrophysiologic and hemodynamic disturbances and ventricular arrhythmias was observed with 7.5% NaCl (percent increase in QRS complex duration: 164.4 ± 21.8% in the non-pretreated group vs 74.7 ± 14.1% in the pretreated group, P<0.05; percent increase in HV interval: 131.4 ± 16.1% in the non-pretreated group vs 58.2 ± 7.5% in the pretreated group, P<0.05; percent increase in monophasic action potential duration: 22.7 ± 6.8% in the non-pretreated group vs 9.8 ± 6.3% in the pretreated group, P<0.05; percent decrease in cardiac index: -46 ± 6% in the non-pretreated group vs -28 ± 5% in the pretreated group, P<0.05). The other three hypertonic solutions were ineffective. These findings suggest an involvement of sodium ions in the mechanism of hypertonic protection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aims of this study were to determine whether standard base excess (SBE) is a useful diagnostic tool for metabolic acidosis, whether metabolic acidosis is clinically relevant in daily evaluation of critically ill patients, and to identify the most robust acid-base determinants of SBE. Thirty-one critically ill patients were enrolled. Arterial blood samples were drawn at admission and 24 h later. SBE, as calculated by Van Slyke's (SBE VS) or Wooten's (SBE W) equations, accurately diagnosed metabolic acidosis (AUC = 0.867, 95%CI = 0.690-1.043 and AUC = 0.817, 95%CI = 0.634-0.999, respectively). SBE VS was weakly correlated with total SOFA (r = -0.454, P < 0.001) and was similar to SBE W (r = -0.482, P < 0.001). All acid-base variables were categorized as SBE VS <-2 mEq/L or SBE VS <-5 mEq/L. SBE VS <-2 mEq/L was better able to identify strong ion gap acidosis than SBE VS <-5 mEq/L; there were no significant differences regarding other variables. To demonstrate unmeasured anions, anion gap (AG) corrected for albumin (AG A) was superior to AG corrected for albumin and phosphate (AG A+P) when strong ion gap was used as the standard method. Mathematical modeling showed that albumin level, apparent strong ion difference, AG A, and lactate concentration explained SBE VS variations with an R² = 0.954. SBE VS with a cut-off value of <-2 mEq/L was the best tool to diagnose clinically relevant metabolic acidosis. To analyze the components of SBE VS shifts at the bedside, AG A, apparent strong ion difference, albumin level, and lactate concentration are easily measurable variables that best represent the partitioning of acid-base derangements.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The type of fluid used during resuscitation may have an important impact on tissue edema. We evaluated the impact of two different regimens of fluid resuscitation on hemodynamics and on lung and intestinal edema during splanchnic hypoperfusion in rabbits. The study included 16 female New Zealand rabbits (2.9 to 3.3 kg body weight, aged 8 to 12 months) with splanchnic ischemia induced by ligation of the superior mesenteric artery. The animals were randomized into two experimental groups: group I (N = 9) received 12 mL·kg-1·h-1 lactated Ringer solution and 20 mL/kg 6% hydroxyethyl starch solution; group II (N = 7) received 36 mL·kg-1·h-1 lactated Ringer solution and 20 mL/kg 0.9% saline. A segment from the ileum was isolated to be perfused. A tonometric catheter was placed in a second gut segment. Superior mesenteric artery (Q SMA) and aortic (Qaorta) flows were measured using ultrasonic flow probes. After 4 h of fluid resuscitation, tissue specimens were immediately removed for estimations of gut and lung edema. There were no differences in global and regional perfusion variables, lung wet-to-dry weight ratios and oxygenation indices between groups. Gut wet-to-dry weight ratio was significantly lower in the crystalloid/colloid-treated group (4.9 ± 1.5) than in the crystalloid-treated group (7.3 ± 2.4) (P < 0.05). In this model of intestinal ischemia, fluid resuscitation with crystalloids caused more gut edema than a combination of crystalloids and colloids.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Shock and resuscitation render patients more susceptible to acute lung injury due to an exacerbated immune response to subsequent inflammatory stimuli. To study the role of innate immunity in this situation, we investigated acute lung injury in an experimental model of ischemia-reperfusion (I-R) followed by an early challenge with live bacteria. Conscious rats (N = 8 in each group) were submitted to controlled hemorrhage and resuscitated with isotonic saline (SS, 0.9% NaCl) or hypertonic saline (HS, 7.5% NaCl) solution, followed by intratracheal or intraperitoneal inoculation of Escherichia coli. After infection, toll-like receptor (TLR) 2 and 4 mRNA expression was monitored by RT-PCR in infected tissues. Plasma levels of tumor necrosis factor α and interleukins 6 and 10 were determined by ELISA. All animals showed similar hemodynamic variables, with mean arterial pressure decreasing to nearly 40 mmHg after bleeding. HS or SS used as resuscitation fluid yielded equal hemodynamic results. Intratracheal E. coli inoculation per se induced a marked neutrophil infiltration in septa and inside the alveoli, while intraperitoneal inoculation-associated neutrophils and edema were restricted to the interseptal space. Previous I-R enhanced lung neutrophil infiltration upon bacterial challenge when SS was used as reperfusion fluid, whereas neutrophil influx was unchanged in HS-treated animals. No difference in TLR expression or cytokine secretion was detected between groups receiving HS or SS. We conclude that HS is effective in reducing the early inflammatory response to infection after I-R, and that this phenomenon is achieved by modulation of factors other than expression of innate immunity components.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Currently, sulfites are employed on board to inhibit melanosis (blackspot) on crustaceans. However, when used in excess this chemical compound not only can cause adverse reactions in SO2-sensitive individuals, but also favors the decomposition of trimethylamine oxide (TMAO) into dimethylamine (DMA) and formaldehyde (FA), thus compromising the quality of the product, which can be observed mainly through the texture change of the meat after cooking. This study was conducted to verify the increase of the contents of DMA and FA by the excessive use of sodium metabisulfite in white shrimp (Penaeus schmitti). For laboratory trials, shrimp were beheaded, washed and immersed in a 2% sodium metabisulfite solution for 10 minutes. Specimens were stored either on ice and maintained for 48 hours in refrigeration, or stored in a freezer for 48 hours. Samples were collected at intervals of 0, 24 and 48 hours, and analyzed for residual SO2, TMAO, TMA, DMA and FA. The immersion of shrimp in a 2% sodium metabisulfite for 10 minutes favored the decomposition of TMAO which greatly increased the contents of DMA and FA. The FA and DMA measured in fresh shrimp was low. Moreover, the storage of shrimp tails on ice resulted in a significant reduction of the TMA, DMA, FA and residual SO2 contents compared to the specimens under frozen storage.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Moisture equilibrium data of mango pulp were determined using the static gravimetric method. Adsorption and desorption isotherms were obtained in the range of 30-70 ºC, to water activities (a w) from 0.02 to 0.97. The application of the GAB model to the experimental results, using direct nonlinear regression analysis, provided agreement between experimental and calculated values. The net isosteric heat of sorption was estimated from equilibrium sorption data, using the Clausius-Clapeyron equation. Isosteric heats of sorption were found to increase with increasing temperature and could be well adjusted by an exponential relationship. The enthalpy-entropy compensation theory was applied to sorption isotherms and plots of deltaH versus deltaS provided the isokinetic temperatures, indicating an enthalpy controlled sorption process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wind is one of the most compelling forms of indirect solar energy. Available now, the conversion of wind power into electricity is and will continue to be an important element of energy self-sufficiency planning. This paper is one in a series intended to report on the development of a new type of generator for wind energy; a compact, high-power, direct-drive permanent magnet synchronous generator (DD-PMSG) that uses direct liquid cooling (LC) of the stator windings to manage Joule heating losses. The main param-eters of the subject LC DD-PMSG are 8 MW, 3.3 kV, and 11 Hz. The stator winding is cooled directly by deionized water, which flows through the continuous hollow conductor of each stator tooth-coil winding. The design of the machine is to a large degree subordinate to the use of these solid-copper tooth-coils. Both steady-state and timedependent temperature distributions for LC DD-PMSG were examined with calculations based on a lumpedparameter thermal model, which makes it possible to account for uneven heat loss distribution in the stator conductors and the conductor cooling system. Transient calculations reveal the copper winding temperature distribution for an example duty cycle during variable-speed wind turbine operation. The cooling performance of the liquid cooled tooth-coil design was predicted via finite element analysis. An instrumented cooling loop featuring a pair of LC tooth-coils embedded in a lamination stack was built and laboratory tested to verify the analytical model. Predicted and measured results were in agreement, confirming the predicted satisfactory operation of the LC DD-PMSG cooling technology approach as a whole.