974 resultados para energy-aware
Resumo:
Sensor network applications such as environmental monitoring demand that the data collection process be carried out for the longest possible time. Our paper addresses this problem by presenting a routing scheme that ensures that the monitoring network remains connected and hence the live sensor nodes deliver data for a longer duration. We analyze the role of relay nodes (neighbours of the base-station) in maintaining network connectivity and present a routing strategy that, for a particular class of networks, approaches the optimal as the set of relay nodes becomes larger. We then use these findings to develop an appropriate distributed routing protocol using potential-based routing. The basic idea of potential-based routing is to define a (scalar) potential value at each node in the network and forward data to the neighbor with the highest potential. We propose a potential function and evaluate its performance through simulations. The results show that our approach performs better than the well known lifetime maximization policy proposed by Chang and Tassiulas (2004), as well as AODV [Adhoc on demand distance vector routing] proposed by Perkins (1997).
Resumo:
Wireless networks transmit information from a source to a destination via multiple hops in order to save energy and, thus, increase the lifetime of battery-operated nodes. The energy savings can be especially significant in cooperative transmission schemes, where several nodes cooperate during one hop to forward the information to the next node along a route to the destination. Finding the best multi-hop transmission policy in such a network which determines nodes that are involved in each hop, is a very important problem, but also a very difficult one especially when the physical wireless channel behavior is to be accounted for and exploited. We model the above optimization problem for randomly fading channels as a decentralized control problem – the channel observations available at each node define the information structure, while the control policy is defined by the power and phase of the signal transmitted by each node.In particular, we consider the problem of computing an energy-optimal cooperative transmission scheme in a wireless network for two different channel fading models: (i) slow fading channels, where the channel gains of the links remain the same for a large number of transmissions, and (ii) fast fading channels,where the channel gains of the links change quickly from one transmission to another. For slow fading, we consider a factored class of policies (corresponding to local cooperation between nodes), and show that the computation of an optimal policy in this class is equivalent to a shortest path computation on an induced graph, whose edge costs can be computed in a decentralized manner using only locally available channel state information(CSI). For fast fading, both CSI acquisition and data transmission consume energy. Hence, we need to jointly optimize over both these; we cast this optimization problem as a large stochastic optimization problem. We then jointly optimize over a set of CSI functions of the local channel states, and a corresponding factored class of control policies corresponding to local cooperation between nodes with a local outage constraint. The resulting optimal scheme in this class can again be computed efficiently in a decentralized manner. We demonstrate significant energy savings for both slow and fast fading channels through numerical simulations of randomly distributed networks.
Resumo:
We present a statistical methodology for leakage power estimation, due to subthreshold and gate tunneling leakage, in the presence of process variations, for 65 nm CMOS. The circuit leakage power variations is analyzed by Monte Carlo (MC) simulations, by characterizing NAND gate library. A statistical “hybrid model” is proposed, to extend this methodology to a generic library. We demonstrate that hybrid model based statistical design results in up to 95% improvement in the prediction of worst to best corner leakage spread, with an error of less than 0.5%, with respect to worst case design.
Resumo:
Accurate system planning and performance evaluation requires knowledge of the joint impact of scheduling, interference, and fading. However, current analyses either require costly numerical simulations or make simplifying assumptions that limit the applicability of the results. In this paper, we derive analytical expressions for the spectral efficiency of cellular systems that use either the channel-unaware but fair round robin scheduler or the greedy, channel-aware but unfair maximum signal to interference ratio scheduler. As is the case in real deployments, non-identical co-channel interference at each user, both Rayleigh fading and lognormal shadowing, and limited modulation constellation sizes are accounted for in the analysis. We show that using a simple moment generating function-based lognormal approximation technique and an accurate Gaussian-Q function approximation leads to results that match simulations well. These results are more accurate than erstwhile results that instead used the moment-matching Fenton-Wilkinson approximation method and bounds on the Q function. The spectral efficiency of cellular systems is strongly influenced by the channel scheduler and the small constellation size that is typically used in third generation cellular systems.
INTACTE: An Interconnect Area, Delay, and Energy Estimation Tool for Microarchitectural Explorations
Resumo:
Prior work on modeling interconnects has focused on optimizing the wire and repeater design for trading off energy and delay, and is largely based on low level circuit parameters. Hence these models are hard to use directly to make high level microarchitectural trade-offs in the initial exploration phase of a design. In this paper, we propose INTACTE, a tool that can be used by architects toget reasonably accurate interconnect area, delay, and power estimates based on a few architecture level parameters for the interconnect such as length, width (in number of bits), frequency, and latency for a specified technology and voltage. The tool uses well known models of interconnect delay and energy taking into account the wire pitch, repeater size, and spacing for a range of voltages and technologies.It then solves an optimization problem of finding the lowest energy interconnect design in terms of the low level circuit parameters, which meets the architectural constraintsgiven as inputs. In addition, the tool also provides the area, energy, and delay for a range of supply voltages and degrees of pipelining, which can be used for micro-architectural exploration of a chip. The delay and energy models used by the tool have been validated against low level circuit simulations. We discuss several potential applications of the tool and present an example of optimizing interconnect design in the context of clustered VLIW architectures. Copyright 2007 ACM.
Resumo:
Frequent accesses to the register file make it one of the major sources of energy consumption in ILP architectures. The large number of functional units connected to a large unified register file in VLIW architectures make power dissipation in the register file even worse because of the need for a large number of ports. High power dissipation in a relatively smaller area occupied by a register file leads to a high power density in the register file and makes it one of the prime hot-spots. This makes it highly susceptible to the possibility of a catastrophic heatstroke. This in turn impacts the performance and cost because of the need for periodic cool down and sophisticated packaging and cooling techniques respectively. Clustered VLIW architectures partition the register file among clusters of functional units and reduce the number of ports required thereby reducing the power dissipation. However, we observe that the aggregate accesses to register files in clustered VLIW architectures (and associated energy consumption) become very high compared to the centralized VLIW architectures and this can be attributed to a large number of explicit inter-cluster communications. Snooping based clustered VLIW architectures provide very limited but very fast way of inter-cluster communication by allowing some of the functional units to directly read some of the operands from the register file of some of the other clusters. In this paper, we propose instruction scheduling algorithms that exploit the limited snooping capability to reduce the register file energy consumption on an average by 12% and 18% and improve the overall performance by 5% and 11% for a 2-clustered and a 4-clustered machine respectively, over an earlier state-of-the-art clustered scheduling algorithm when evaluated in the context of snooping based clustered VLIW architectures.
Resumo:
This paper describes a bi-directional switch commutation strategy for a resonant matrix converter loaded with a contactless energy transmission system. Due to the different application compared to classical 3 phase to 3 phase matrix converters supplying induction machines a new investigation of possible commutation principles is necessary. The paper therefore compares the full bridge series-resonant converter with the 3 phase to 2 phase matrix converter. From the commutation of the full bridge series-resonant converter, conditions for the bi-directional switch commutation are derived. One of the main benefits of the derived strategy is the minimization of commutation steps, which is independent from the load current sign.
Resumo:
Combining the newly developed nonlinear model predictive static programming technique with null range direction concept, a novel explicit energy-insensitive guidance design method is presented in this paper for long range flight vehicles, which leads to a closed form solution of the necessary guidance command update. Owing to the closed form nature, it does not lead to computational difficulties and the proposed optimal guidance algorithm can be implemented online. The guidance law is verified in a solid motor propelled long range flight vehicle, for which coming up with an effective guidance law is more difficult as compared to a liquid engine propelled vehicle (mainly because of the absence of thrust cutoff facility). Assuming the starting point of the second stage to be a deterministic point beyond the atmosphere, the scheme guides the vehicle properly so that it completes the mission within a tight error bound. The simulation results demonstrate its ability to intercept the target, even with an uncertainty of greater than 10% in burnout time.
Resumo:
India's rural energy challenges are formidable with the presence of majority energy poor. In 2005, out of a rural population of 809 million, 364 million lacked access to electricity and 726 million to modern cooking fuels. This indicates low effectiveness of government policies and programs of the past, and need for a more effective approach to bridge this gap. However, before the government can address this challenge, it is essential that it gain a deeper insight into prevailing status of energy access and reasons for such outcomes. Toward this, we perform a critical analysis of the dynamics of energy access status with respect to time, income and regions, and present the results as possible indicators of effectiveness of policies/programmes. Results indicate that energy deprivations are highest for poorest households with 93% depending on biomass for cooking and 62% lacking access to electricity. The annual growth rates in expansion in energy access are gradually declining from double digit growth rates experienced 10 years back to just around 4% in recent years. Regional variations indicate, on an average, cooking access levels were 5.3 times higher in top five states compared to bottom five states whereas this ratio was 3.4 for electricity access. (C) 2011 Elsevier Ltd. All rights reserved.
Energy Efficiency Level in Small-Scale Industry Clusters: Does Entrepreneurial factor play any role?