978 resultados para dynamically modified silica capillary electrochromatography


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of contact angle and tube radius on the capillary-driven flow for circular cylindrical tubes is studied systematically by microgravity experiments using the drop tower. Experimental results show that the velocity of the capillary flow decreases monotonically with an increase in the contact angle. However, the time-evolution of the velocity of the capillary flow is different for different sized tubes. At the beginning of the microgravity period, the capillary flow in a thinner tube moves faster than that in a thicker tube, and then the latter overtakes the former. Therefore, there is an intersection between the curves of meniscus velocity vs microgravity time for two differently sized tubes. In addition, for two given sized tubes this intersection is delayed when the contact angle increases. The experimental results are analyzed theoretically and also supported by numerical computations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of capillary-gravity waves of permanent form on deep water are studied. Two different formulations to the problem are given. The theory of simple bifurcation is reviewed. For small amplitude waves a formal perturbation series is used. The Wilton ripple phenomenon is reexamined and shown to be associated with a bifurcation in which a wave of permanent form can double its period. It is shown further that Wilton's ripples are a special case of a more general phenomenon in which bifurcation into subharmonics and factorial higher harmonics can occur. Numerical procedures for the calculation of waves of finite amplitude are developed. Bifurcation and limit lines are calculated. Pure and combination waves are continued to maximum amplitude. It is found that the height is limited in all cases by the surface enclosing one or more bubbles. Results for the shape of gravity waves are obtained by solving an integra-differential equation. It is found that the family of solutions giving the waveheight or equivalent parameter has bifurcation points. Two bifurcation points and the branches emanating from them are found specifically, corresponding to a doubling and tripling of the wavelength. Solutions on the new branches are calculated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The branching theory of solutions of certain nonlinear elliptic partial differential equations is developed, when the nonlinear term is perturbed from unforced to forced. We find families of branching points and the associated nonisolated solutions which emanate from a bifurcation point of the unforced problem. Nontrivial solution branches are constructed which contain the nonisolated solutions, and the branching is exhibited. An iteration procedure is used to establish the existence of these solutions, and a formal perturbation theory is shown to give asymptotically valid results. The stability of the solutions is examined and certain solution branches are shown to consist of minimal positive solutions. Other solution branches which do not contain branching points are also found in a neighborhood of the bifurcation point.

The qualitative features of branching points and their associated nonisolated solutions are used to obtain useful information about buckling of columns and arches. Global stability characteristics for the buckled equilibrium states of imperfect columns and arches are discussed. Asymptotic expansions for the imperfection sensitive buckling load of a column on a nonlinearly elastic foundation are found and rigorously justified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical model is proposed to describe the microscopic processes involved in the ablation in fused silica induced by femtosecond-laser pulse. Conduction-band electron (CBE) can absorb laser energy, the rate is calculated by quantum mechanical method and classical method. CBE is produced via photoionization (PI) and impact ionization (II). The PI and II rates are calculated by using the Keldysh theory and double-flux model, respectively. Besides the CBE production, we investigate laser energy deposition and its distribution. The equation of energy diffusion in physical space is resolved numerically. Taking energy density E-dep=54 kJ/cm(3) as the criterion, we calculate damage threshold, ablation depth, and ablation volumes. It is found that if energy diffusion is considered, energy density near sample surface is reduced to 1/10, damage threshold is enhanced more than 30%, ablation depth is increased by a factor of 10. Our theoretical results agree well with experimental measurements. Several ultrafast phenomena in fused silica are also discussed. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Redox-active ruthenium complexes have been covalently attached to the surface of a series of natural, semisynthetic and recombinant cytochromes c. The protein derivatives were characterized by a variety of spectroscopic techniques. Distant Fe^(2+) - Ru^(3+) electronic couplings were extracted from intramolecular electron-transfer rates in Ru(bpy)_2(im)HisX (where X= 33, 39, 62, and 72) derivatives of cyt c. The couplings increase according to 62 (0.0060) < 72 (0.057) < 33 (0.097) < 39 (0.11 cm^(-1)); however, this order is incongruent with histidine to heme edge-edge distances [62 (14.8) > 39 (12.3) > 33 (11.1) > =72 (8.4 Å)]. These results suggest the chemical nature of the intervening medium needs to be considered for a more precise evaluation of couplings. The rates (and couplings) correlate with the lengths of a-tunneling pathways comprised of covalent bonds, hydrogen bonds and through-space jumps from the histidines to the heme group. Space jumps greatly decrease couplings: one from Pro71 to Met80 extends the σ-tunneling length of the His72 pathway by roughly 10 covalent bond units. Experimental couplings also correlate well with those calculated using extended Hiickel theory to evaluate the contribution of the intervening protein medium.

Two horse heart cyt c variants incorporating the unnatural amino acids (S)-2- amino-3-(2,2'-bipyrid-6-yl)-propanoic acid (6Bpa) and (S)-2-amino-3-(2,2'-bipyrid-4-yl)propanoic acid ( 4Bpa) at position 72 have been prepared using semisynthetic protocols. Negligible perturbation of the protein structure results from this introduction of unnatural amino acids. Redox-active Ru(2,2'-bipyridine)_2^(2+) binds to 4Bpa72 cyt c but not to the 6Bpa protein. Enhanced ET rates were observed in the Ru(bpy)_2^(2+)-modified 4Bpa72 cyt c relative to the analogous His72 derivative. The rapid (< 60 nanosecond) photogeneration of ferrous Ru-modified 4Bpa72 cyt c in the conformationally altered alkaline state demonstrates that laser-induced ET can be employed to study submicrosecond protein-folding events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical frequency combs (OFCs) provide direct phase-coherent link between optical and RF frequencies, and enable precision measurement of optical frequencies. In recent years, a new class of frequency combs (microcombs) have emerged based on parametric frequency conversions in dielectric microresonators. Micocombs have large line spacing from 10's to 100's GHz, allowing easy access to individual comb lines for arbitrary waveform synthesis. They also provide broadband parametric gain bandwidth, not limited by specific atomic or molecular transitions in conventional OFCs. The emerging applications of microcombs include low noise microwave generation, astronomical spectrograph calibration, direct comb spectroscopy, and high capacity telecommunications.

In this thesis, research is presented starting with the introduction of a new type of chemically etched, planar silica-on-silicon disk resonator. A record Q factor of 875 million is achieved for on-chip devices. A simple and accurate approach to characterize the FSR and dispersion of microcavities is demonstrated. Microresonator-based frequency combs (microcombs) are demonstrated with microwave repetition rate less than 80 GHz on a chip for the first time. Overall low threshold power (as low as 1 mW) of microcombs across a wide range of resonator FSRs from 2.6 to 220 GHz in surface-loss-limited disk resonators is demonstrated. The rich and complex dynamics of microcomb RF noise are studied. High-coherence, RF phase-locking of microcombs is demonstrated where injection locking of the subcomb offset frequencies are observed by pump-detuning-alignment. Moreover, temporal mode locking, featuring subpicosecond pulses from a parametric 22 GHz microcomb, is observed. We further demonstrated a shot-noise-limited white phase noise of microcomb for the first time. Finally, stabilization of the microcomb repetition rate is realized by phase lock loop control.

For another major nonlinear optical application of disk resonators, highly coherent, simulated Brillouin lasers (SBL) on silicon are also demonstrated, with record low Schawlow-Townes noise less than 0.1 Hz^2/Hz for any chip-based lasers and low technical noise comparable to commercial narrow-linewidth fiber lasers. The SBL devices are efficient, featuring more than 90% quantum efficiency and threshold as low as 60 microwatts. Moreover, novel properties of the SBL are studied, including cascaded operation, threshold tuning, and mode-pulling phenomena. Furthermore, high performance microwave generation using on-chip cascaded Brillouin oscillation is demonstrated. It is also robust enough to enable incorporation as the optical voltage-controlled-oscillator in the first demonstration of a photonic-based, microwave frequency synthesizer. Finally, applications of microresonators as frequency reference cavities and low-phase-noise optomechanical oscillators are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flies are particularly adept at balancing the competing demands of delay tolerance, performance, and robustness during flight, which invites thoughtful examination of their multimodal feedback architecture. This dissertation examines stabilization requirements for inner-loop feedback strategies in the flapping flight of Drosophila, the fruit fly, against the backdrop of sensorimotor transformations present in the animal. Flies have evolved multiple specializations to reduce sensorimotor latency, but sensory delay during flight is still significant on the timescale of body dynamics. I explored the effect of sensor delay on flight stability and performance for yaw turns using a dynamically-scaled robot equipped with a real-time feedback system that performed active turns in response to measured yaw torque. The results show a fundamental tradeoff between sensor delay and permissible feedback gain, and suggest that fast mechanosensory feedback provides a source of active damping that compliments that contributed by passive effects. Presented in the context of these findings, a control architecture whereby a haltere-mediated inner-loop proportional controller provides damping for slower visually-mediated feedback is consistent with tethered-flight measurements, free-flight observations, and engineering design principles. Additionally, I investigated how flies adjust stroke features to regulate and stabilize level forward flight. The results suggest that few changes to hovering kinematics are actually required to meet steady-state lift and thrust requirements at different flight speeds, and the primary driver of equilibrium velocity is the aerodynamic pitch moment. This finding is consistent with prior hypotheses and observations regarding the relationship between body pitch and flight speed in fruit flies. The results also show that the dynamics may be stabilized with additional pitch damping, but the magnitude of required damping increases with flight speed. I posit that differences in stroke deviation between the upstroke and downstroke might play a critical role in this stabilization. Fast mechanosensory feedback of the pitch rate could enable active damping, which would inherently exhibit gain scheduling with flight speed if pitch torque is regulated by adjusting stroke deviation. Such a control scheme would provide an elegant solution for flight stabilization across a wide range of flight speeds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies in turbulence often focus on two flow conditions, both of which occur frequently in real-world flows and are sought-after for their value in advancing turbulence theory. These are the high Reynolds number regime and the effect of wall surface roughness. In this dissertation, a Large-Eddy Simulation (LES) recreates both conditions over a wide range of Reynolds numbers Reτ = O(102)-O(108) and accounts for roughness by locally modeling the statistical effects of near-wall anisotropic fine scales in a thin layer immediately above the rough surface. A subgrid, roughness-corrected wall model is introduced to dynamically transmit this modeled information from the wall to the outer LES, which uses a stretched-vortex subgrid-scale model operating in the bulk of the flow. Of primary interest is the Reynolds number and roughness dependence of these flows in terms of first and second order statistics. The LES is first applied to a fully turbulent uniformly-smooth/rough channel flow to capture the flow dynamics over smooth, transitionally rough and fully rough regimes. Results include a Moody-like diagram for the wall averaged friction factor, believed to be the first of its kind obtained from LES. Confirmation is found for experimentally observed logarithmic behavior in the normalized stream-wise turbulent intensities. Tight logarithmic collapse, scaled on the wall friction velocity, is found for smooth-wall flows when Reτ ≥ O(106) and in fully rough cases. Since the wall model operates locally and dynamically, the framework is used to investigate non-uniform roughness distribution cases in a channel, where the flow adjustments to sudden surface changes are investigated. Recovery of mean quantities and turbulent statistics after transitions are discussed qualitatively and quantitatively at various roughness and Reynolds number levels. The internal boundary layer, which is defined as the border between the flow affected by the new surface condition and the unaffected part, is computed, and a collapse of the profiles on a length scale containing the logarithm of friction Reynolds number is presented. Finally, we turn to the possibility of expanding the present framework to accommodate more general geometries. As a first step, the whole LES framework is modified for use in the curvilinear geometry of a fully-developed turbulent pipe flow, with implementation carried out in a spectral element solver capable of handling complex wall profiles. The friction factors have shown favorable agreement with the superpipe data, and the LES estimates of the Karman constant and additive constant of the log-law closely match values obtained from experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The damage in fused silica and CaF2 crystals induced by wavelength tunable femtosecond lasers is studied. The threshold fluence is observed to increase rapidly with laser wavelength lambda in the region of 250-800 nm, while it is nearly a constant for 800

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design of synthetic molecules that recognize specific sequences of DNA is an ongoing challenge in molecular medicine. Cell-permeable small molecules targeting predetermined DNA sequences offer a potential approach for offsetting the abnormal effects of misregulated gene-expression. Over the past twenty years, Professor Peter B. Dervan has developed a set of pairing rules for the rational design of minor groove binding polyamides containing pyrrole (Py), imidazole (Im), and hydroxypyrrole (Hp). Polyamides have illustrated the capability to permeate cells and inhibit transcription of specific genes in vivo. This provides impetus to identify structural elements that expand the repetoire of polyamide motifs with recognition properties comparable to naturally occurring DNA binding proteins. Through the introduction of chiral amino acids, we have developed chiral polyamides with stereochemically regulated binding characteristics. In addition, chiral substituents have facilitated the development of new polyamide motifs that broaden binding site sizes targetable by this class of ligands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Redox-active probes are designed and prepared for use in DNA-mediated electron transfer studies. These probes consist of ruthenium(II) complexes bound to nucleosides that possess metal-binding ligands. Low- and high-potential oxidants are synthesized from these modified nucleosides and display reversible one-electron electrochemical behavior. The ruthenium-modified nucleosides exhibit distinct charge-transfer transitions in the visible region that resemble those of appropriate model complexes. Resonance Raman and time-resolved emission spectroscopy are used to characterize the nature of these transitions.

The site-specific incorporation of these redox-active probes into oligonucleotides is explored using post-synthetic modification and solid-phase synthetic methods. The preparation of the metal-binding nucleosides, their incorporation into oligonucleotides, and characterization of the resulting oligonucleotides is described. Because the insertion of these probes into modified oligonucleotides using post-synthetic modification is unsuccessful, solid-phase synthetic methods are explored. These efforts lead to the first report of 3'-metallated oligonucleotides prepared completely by automated solid-phase synthesis. Preliminary efforts to prepare a bis-metallated oligonucleotide by automated synthesis are described.

The electrochemical, absorption, and emissive features of the ruthenium-modified oligonucleotides are unchanged from those of the precursor metallonucleoside. The absence of any change in these properties upon incorporation into oligonucleotides and subsequent hybridization suggests that the incorporated ruthenium(II) complex is a valuable probe for DNA-mediated electron transfer studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple three-axis model has been developed, which has been successfully applied to the analysis of the light transmittance in spatial incident angle and the simulation of modified formula of Malus' law for Glan-Taylor prisms. Our results indicate that the fluctuations on the cosine squared curve are due to specific misalignments between the axis of the optical system, the optical axis of the prism and the mechanical axis (rotation axis) of prism, which results in the fact that different initial relative location of the to-be-measured-prism in the testing system corresponds to different shape of Malus' law curve. Methods to get absolutely smooth curve are proposed. This analysis is available for other kinds of Glan-type prisms. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of a carbon nanotube microneedle array is explored in this thesis from multiple perspectives including microneedle fabrication, physical aspects of transdermal delivery, and in vivo transdermal drug delivery experiments. Starting with standard techniques in carbon nanotube (CNT) fabrication, including catalyst patterning and chemical vapor deposition, vertically-aligned carbon nanotubes are utilized as a scaffold to define the shape of the hollow microneedle. Passive, scalable techniques based on capillary action and unique photolithographic methods are utilized to produce a CNT-polymer composite microneedle. Specific examples of CNT-polyimide and CNT-epoxy microneedles are investigated. Further analysis of the transport properties of polymer resins reveals general requirements for applying arbitrary polymers to the fabrication process.

The bottom-up fabrication approach embodied by vertically-aligned carbon nanotubes allows for more direct construction of complex high-aspect ratio features than standard top-down fabrication approaches, making microneedles an ideal application for CNTs. However, current vertically-aligned CNT fabrication techniques only allow for the production of extruded geometries with a constant cross-sectional area, such as cylinders. To rectify this limitation, isotropic oxygen etching is introduced as a novel fabrication technique to create true 3D CNT geometry. Oxygen etching is utilized to create a conical geometry from a cylindrical CNT structure as well as create complex shape transformations in other CNT geometries.

CNT-polymer composite microneedles are anchored onto a common polymer base less than 50 µm thick, which allows for the microneedles to be incorporated into multiple drug delivery platforms, including modified hypodermic syringes and silicone skin patches. Cylindrical microneedles are fabricated with 100 µm outer diameter and height of 200-250 µm with a central cavity, or lumen, diameter of 30 µm to facilitate liquid drug flow. In vitro delivery experiments in swine skin demonstrate the ability of the microneedles to successfully penetrate the skin and deliver aqueous solutions.

An in vivo study was performed to assess the ability of the CNT-polymer microneedles to deliver drugs transdermally. CNT-polymer microneedles are attached to a hand actuated silicone skin patch that holds a liquid reservoir of drugs. Fentanyl, a potent analgesic, was administered to New Zealand White Rabbits through 3 routes of delivery: topical patch, CNT-polymer microneedles, and subcutaneous hypodermic injection. Results demonstrate that the CNT-polymer microneedles have a similar onset of action as the topical patch. CNT-polymer microneedles were also vetted as a painless delivery approach compared to hypodermic injection. Comparative analysis with contemporary microneedle designs demonstrates that the delivery achieved through CNT-polymer microneedles is akin to current hollow microneedle architectures. The inherent advantage of applying a bottom-up fabrication approach alongside similar delivery performance to contemporary microneedle designs demonstrates that the CNT-polymer composite microneedle is a viable architecture in the emerging field of painless transdermal delivery.