979 resultados para dye-sensitized solar cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ferrocene-functionalised thiophene derivatives (TFn) with different length of oxyethylene chains were synthesized and polymerized chemically with iron (III) chloride as an oxidant. The resulting ferrocene-functionalised polythiophenes (PTFn) show good solubility in most solvents, such as chloroform (CHCl3) tetrahydrofuran (THF), acetone, etc. The structure and properties of the PTFn polymers were confirmed by IR, H-1 NMR, AFM and photoluminescence (PL). The polymers PTFn show good redox activity with no attenuation of the electroactivity after multiple potential cycling. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The substantial crystallization suppression of poly(3-hexylthiophene) (P3HT) in the untreated P3HT:C60 composite film prepared from o-dichlorobenzene (ODCB) solution has been revealed. Besides, the effective conjugation length of P3HT in this composite has been nearly maintained to that in the solution. The different crystallization behaviors of P3HT in its composites with C60 and [6,6]-phenyl C-61 butyric acid methyl ester (PCBM) are mainly attributed to the relative solubility of C60 and PCBM with respect to P3HT in ODCB. The solution to overcome this disadvantage of chain conformation and crystallinity of P3HT in the composite with C60 is thus proposed and finalized by resorting to the addition of low volatile solvent with much higher solubility of C60 than P3HT into the main solvent used, so as P3HT can crystallize before C60 forms crystallites in the solution. The feasibility of this approach has been proven by the improved efficiency of devices based on composites of P3HT and the low cost C60 without resorting to post-treatments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin poly(3-butylthiophene) (P3BT) film composed of aligned lamellae attached to the edge of the original film has been achieved via a controlled solvent vapor treatment (C-SVT) method. The polarized optical microscopy operated at both single-polarization and cross-polarization modes has been used to investigate the alignment of the fiber-like lamellae. A numerical simulation method is used to quantitatively calculate angle distributions of the lamellae deviated from the film growth direction. Prepatterned P3BT film edge acts as nuclei which densely initialize subsequent crystal growth by exhausting the materials transported from the partially dissolved film. The growth of new film upon crystallization is actually a self-healing process where the two-dimensional geometric confinement is mainly responsible for this parallel alignment of P3BT crystals. The solvent vapor pressure should be carefully chosen so as to induce crystal growth but avoid liquid instability which will destroy the continuity of the film.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new series of film-forming, low-bandgap chromophores (1a,b and 2a,b) were rationally designed with aid of a computational study., and then synthesized and characterized. To realize absorption and emission above the 1000 nm wavelength, the molecular design focuses on lowering the LUMO level by fusing common heterocyclic units into a large conjugated core that acts an electron acceptor and increasing the charge transfer by attaching the multiple electron-donating groups at the appropriate positions of the acceptor core. The chromophores have bandgap levels of 1.27-0.71 eV, and accordingly absorb at 746-1003 nm and emit at 1035-1290 nm in solution. By design, the relatively high molecular weight (up to 2400 g mol(-1)) and non-coplanar structure allow these near-infrared (NIR) chromophores to be readily spin-coated as uniform thin films and doped with other organic semiconductors for potential device applications. Doping with [6,6]-phenyl-C-61 butyric acid methyl ester leads to a red shift in the absorption on]), for la and 2a. An interesting NIR electrochromism was found for 2a, with absorption being turned on at 1034 nm when electrochemically switched (at 1000 mV) from its neutral state to a radical cation state. Furthermore, a large Stokes shift (256-318 nm) is also unique for this multidonor-acceptor type of chromophore.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical properties of a series of structurally related fullerooxazoles, [6,6] cyclic phenylimidate C-60 (1), 1,2-benzal-3-N-4-O-cyclic phenylimidate C-60 (2), and 1,4-dibenzyl-2,3-cyclic phenylimidate C-60 (3), are described, and the spectroscopic characterizations of their anionic species are reported. The results show that compounds I and 2 undergo retro-cycloaddition reactions that lead to the formation of C-60 and C61HPh, respectively, upon two-electron-transfer reduction. However, compound 3 demonstrates much more electrochemical stability as no retro-cycloaddition reaction occurs under similar conditions. Natural bond orbital (NBO) calculations on charge distribution show there is no significant difference among the dianions of 1, 2, and 3, indicating that the electrochemical stability of 3 is unlikely to be caused by the charge distribution difference of the dianions of three compounds. Examination on the crystal structure of compound 3 reveals close contacts of the C-H group with the heteroatoms (N and O) of cyclic phenylimidate, suggesting the existence of C-H center dot center dot center dot X (X = N, O) intramolecular hydrogen bonding among the addends, which is further confirmed by NBO analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Needle-like single crystals of poly(3-octylthiophene) (P3OT) have been prepared by tetrahydrofuran-vapor annealing. The morphology and structure of the crystals were characterized with optical microscopy, scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and wide-angle X-ray diffraction. It is observed that the P3OT molecules are packed with the backbones parallel to the length axis of the crystal and the alkyl side chains perpendicular to the substrate. The field effect transistor based on the P3OT single crystal exhibited a charge carrier mobility of 1.54 x 10(-4) cm(2)/(Vs) and on/off current ratio of 37, and the molecular orientation of the crystal is ascribed to account for the device performance. The time-dependent morphological evolution demonstrated that the crystals underwent Ostwald ripening when annealed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rigid backbone of the poly(3-butylthiophene) molecule adopts a perpendicular orientation with respect to the substrate by using a solvent-vapor treatment (see figure). Small and closely contacting spherulites instead of conventional whisker-like crystals are achieved. This could be utilized to improve charge-carrier mobility particularly in the direction normal to the film plane by designing and constructing thick crystalline domains in the functional layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(3-butylthiophene) (P3BT)/insulating-polymer composites with high electrical conductivity have been prepared directly from the solution. These composites exhibit much higher conductivity compared to pure P3BT with the same preparation method provided that P3BT content is higher than 10 wt %. Morphological studies on both the pure P3BT and the composites with insulating polymer show that P3BT highly crystallizes and develops into whisker-like crystals. These nanowires are homogeneously distributed within the insulating polymer matrix and form conductive networks, which provide both extremely large interface area between conjugated polymer and insulating polymer matrix and highly efficient conductive channels through out the whole composite. In contrast, the conductivity enhancement of P3HT/PS composite is not so obvious and drops down immediately with increased PS content due mainly to the absence of highly crystalline whisker-like crystals and much larger scale phase separation between the components. The results presented here could further illuminate the origin of conductivity formation in organic semiconducting composites and promote applications of these polymer semiconductor/insulator composites in the fields of organic (opto-)electronics, electromagnetic shielding, and antistatic materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A bilayer CdS/ITO film was obtained. The dipped CdS was grown by an ultrasonic colloid deposition (USCD) method. Microstructure of the CdS film made by USCD has a wider transmission range and a higher transmittance. Amorphous indium-tin-oxide (ITO) thin film was deposited using d.c. magnetron-sputtering at room temperature. The ITO films exhibited good conductivity and maximum transmittance of 94%. The CdS/ITO bilayer was investigated by means of GIXD (grazing incidence X-ray diffraction) at different incidence angles (alpha = 0.20-5.00degrees) and XRD. We discuss a model for the thin bilayer film. SEM and AFM show that homogeneous CdS films with a bar-shaped ultrafine particles and ITO film with nanometer structure. The mechanism of the bilayer CdS/ITO film is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel proton-conducting gelatinous electrolytes templated by room-temperature ionic liquid (RTIL) 1-butyl-3-methyl-imidazolium-tetrafluoroborate (BMImBF(4)) have been prepared in methylsisesquioxane backbone containing H3PO4, and the influences of the RTIL on the structure, morphology, thermal stability, and electrochemical properties of the gelatinous electrolytes have been examined. X-ray diffraction and scanning electron microscopy proved that BMImBF(4) acted as structure-directing template during the sol-gel process of methyl-trimethoxysilane. X-ray photoelectron spectra and infrared spectroscopy demonstrated that the hydrogen-bonding was formed between BMImBF(4) and H3PO4. The electrolytes had good thermal stability up to 300 degreesC and showed superior mechanical and electrochemical properties. A room-temperature conductivity of 1.2 x 10(-3) S cm(-1) was obtained for the electrolyte at the molar ratio of RTIL/Si/H3PO4 0.3/1/1, and its electrochemical window was up to 1.5 V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semiconductor nanowires are pseudo 1-D structures where the magnitude of the semiconducting material is confined to a length of less than 100 nm in two dimensions. Semiconductor nanowires have a vast range of potential applications, including electronic (logic devices, diodes), photonic (laser, photodetector), biological (sensors, drug delivery), energy (batteries, solar cells, thermoelectric generators), and magnetic (spintronic, memory) devices. Semiconductor nanowires can be fabricated by a range of methods which can be categorised into one of two paradigms, bottom-up or top-down. Bottom-up processes can be defined as those where structures are assembled from their sub-components in an additive fashion. Top-down fabrication strategies use sculpting or etching to carve structures from a larger piece of material in a subtractive fashion. This seminar will detail a number of novel routes to fabricate semiconductor nanowires by both bottom-up and top-down paradigms. Firstly, a novel bottom-up route to fabricate Ge nanowires with controlled diameter distributions in the sub-20 nm regime will be described. This route details nanowire synthesis and diameter control in the absence of a foreign seed metal catalyst. Additionally a top-down route to nanowire array fabrication will be detailed outlining the importance of surface chemistry in high-resolution electron beam lithography (EBL) using hydrogen silsesquioxane (HSQ) on Ge and Bi2Se3 surfaces. Finally, a process will be described for the directed self-assembly of a diblock copolymer (PS-b-PDMS) using an EBL defined template. This section will also detail a route toward selective template sidewall wetting of either block in the PS-b-PDMS system, through tailored functionalisation of the template and substrate surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An overview on processes that are relevant in light-induced fuel generation, such as water photoelectrolysis or carbon dioxide reduction, is given. Considered processes encompass the photophysics of light absorption, excitation energy transfer to catalytically active sites and interfacial reactions at the catalyst/solution phase boundary. The two major routes envisaged for realization of photoelectrocatalytic systems, e.g. bio-inspired single photon catalysis and multiple photon inorganic or hybrid tandem cells, are outlined. For development of efficient tandem cell structures that are based on non-oxidic semiconductors, stabilization strategies are presented. Physical surface passivation is described using the recently introduced nanoemitter concept which is also applicable in photovoltaic (solid state or electrochemical) solar cells and first results with p-Si and p-InP thin films are presented. Solar-to-hydrogen efficiencies reach 12.1% for homoepitaxial InP thin films covered with Rh nanoislands. In the pursuit to develop biologically inspired systems, enzyme adsorption onto electrochemically nanostructured silicon surfaces is presented and tapping mode atomic force microscopy images of heterodimeric enzymes are shown. An outlook towards future envisaged systems is given. © 2010 The Royal Society of Chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BRCA1 is a tumor suppressor gene implicated in transcriptional regulation. We have generated cell lines with inducible expression of BRCA1 as a tool to identify downstream targets that may be important mediators of BRCA1 function. Oligonucleotide array-based expression profiling identified 11 previously described interferon regulated genes that were up-regulated following inducible expression of BRCA1. Northern blot analysis revealed that a subset of the identified targets including IRF-7, MxA, and ISG-54 were synergistically up-regulated by BRCA1 in the presence of interferon gamma (IFN-gamma) but not interferons alpha or beta. Importantly, IFN-gamma-mediated induction of IRF-7 and MxA was attenuated in the BRCA1 mutant cell line HCC1937, an effect that was rescued following reconstitution of exogenous wild type BRCA1 in these cells. Furthermore, reconstituted BRCA1 sensitized HCC1937 cells to IFN-gamma-induced apoptotic cell death. This study identifies BRCA1 as a component of the IFN-gamma-regulated signaling pathway and suggests that BRCA1 may play a role in the regulation of IFN-gamma-mediated apoptosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo-2L) has emerged as a promising anticancer agent. However, resistance to TRAIL is likely to be a major problem, and sensitization of cancer cells to TRAIL may therefore be an important anticancer strategy. In this study, we examined the effect of the epidermal growth factor receptor (EGFR)tyrosine kinase inhibitor (TKI) gefitinib and a human epidermal receptor 2 (HER2)-TKI (M578440) on the sensitivity of human colorectal cancer (CRC) cell lines to recombinant human TRAIL (rhTRAIL). A synergistic interaction between rhTRAIL and gefitinib and rhTRAIL and M578440 was observed in both rhTRAIL-sensitive and resistant CRC cells. This synergy correlated with an increase in EGFR and HER2 activation after rhTRAIL treatment. Furthermore, treatment of CRC cells with rhTRAIL resulted in activation of the Src family kinases (SFK). Importantly, we found that rhTRAIL treatment induced shedding of transforming growth factor-alpha (TGF-alpha) that was dependent on SFK activity and the protease ADAM-17. Moreover, this shedding of TGF-alpha was critical for rhTRAIL-induced activation of EGFR. In support of this, SFK inhibitors and small interfering RNAs targeting ADAM-17 and TGF-alpha also sensitized CRC cells to rhTRAIL-mediated apoptosis. Taken together, our findings indicate that both rhTRAIL-sensitive and resistant CRC cells respond to rhTRAIL treatment by activating an EGFR/HER2-mediated survival response and that these cells can be sensitized to rhTRAIL using EGFR/HER2-targeted therapies. Furthermore, this acute response to rhTRAIL is regulated by SFK-mediated and ADAM-17-mediated shedding of TGF-alpha, such that targeting SFKs or inhibiting ADAM-17, in combination with rhTRAIL, may enhance the response of CRC tumors to rhTRAIL. [Cancer Res 2008;68(20):8312-21]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We found that procaspase 8 was overexpressed in non-small-cell lung cancers (NSCLCs) compared with matched normal tissues. The caspase 8 inhibitor FLICE-inhibitory protein (FLIP) was also overexpressed in the majority of NSCLCs. Silencing FLIP induced caspase 8 activation and apoptosis in NSCLC cell lines, but not in normal lung cell lines. Apoptosis induced by FLIP silencing was mediated by the TRAIL death receptors DR4 and DR5, but was not dependent on ligation of the receptors by TRAIL. Furthermore, the apoptosis induced by FLIP silencing was dependent on the overexpression of procaspase 8 in NSCLC cells. Moreover, in NSCLC cells, but not in normal cells, FLIP silencing induced co-localization of DR5 and ceramide, and disruption of this co-localization abrogated apoptosis. FLIP silencing supra-additively increased TRAIL-induced apoptosis of NSCLC cells; however, normal lung cells were resistant to TRAIL, even when FLIP was silenced. Importantly, FLIP silencing sensitized NSCLC cells but not normal cells to chemotherapy in vitro, and silencing FLIP in vivo retarded NSCLC xenograft growth and enhanced the anti-tumour effects of cisplatin. Collectively, our results suggest that due to frequent procaspase 8 overexpression, NSCLCs may be particularly sensitive to FLIP-targeted therapies.