907 resultados para disordered systems (theory)
Resumo:
Localized molecular orbitals (LMOs) are much more compact representations of electronic degrees of freedom than canonical molecular orbitals (CMOs). The most compact representation is provided by nonorthogonal localized molecular orbitals (NOLMOs), which are linearly independent but are not orthogonal. Both LMOs and NOLMOs are thus useful for linear-scaling calculations of electronic structures for large systems. Recently, NOLMOs have been successfully applied to linear-scaling calculations with density functional theory (DFT) and to reformulating time-dependent density functional theory (TDDFT) for calculations of excited states and spectroscopy. However, a challenge remains as NOLMO construction from CMOs is still inefficient for large systems. In this work, we develop an efficient method to accelerate the NOLMO construction by using predefined centroids of the NOLMO and thereby removing the nonlinear equality constraints in the original method ( J. Chem. Phys. 2004 , 120 , 9458 and J. Chem. Phys. 2000 , 112 , 4 ). Thus, NOLMO construction becomes an unconstrained optimization. Its efficiency is demonstrated for the selected saturated and conjugated molecules. Our method for fast NOLMO construction should lead to efficient DFT and NOLMO-TDDFT applications to large systems.
Resumo:
Time-dependent density functional theory (TDDFT) has broad application in the study of electronic response, excitation and transport. To extend such application to large and complex systems, we develop a reformulation of TDDFT equations in terms of non-orthogonal localized molecular orbitals (NOLMOs). NOLMO is the most localized representation of electronic degrees of freedom and has been used in ground state calculations. In atomic orbital (AO) representation, the sparsity of NOLMO is transferred to the coefficient matrix of molecular orbitals (MOs). Its novel use in TDDFT here leads to a very simple form of time propagation equations which can be solved with linear-scaling effort. We have tested the method for several long-chain saturated and conjugated molecular systems within the self-consistent charge density-functional tight-binding method (SCC-DFTB) and demonstrated its accuracy. This opens up pathways for TDDFT applications to large bio- and nano-systems.
Resumo:
Vocal learning is a critical behavioral substrate for spoken human language. It is a rare trait found in three distantly related groups of birds-songbirds, hummingbirds, and parrots. These avian groups have remarkably similar systems of cerebral vocal nuclei for the control of learned vocalizations that are not found in their more closely related vocal non-learning relatives. These findings led to the hypothesis that brain pathways for vocal learning in different groups evolved independently from a common ancestor but under pre-existing constraints. Here, we suggest one constraint, a pre-existing system for movement control. Using behavioral molecular mapping, we discovered that in songbirds, parrots, and hummingbirds, all cerebral vocal learning nuclei are adjacent to discrete brain areas active during limb and body movements. Similar to the relationships between vocal nuclei activation and singing, activation in the adjacent areas correlated with the amount of movement performed and was independent of auditory and visual input. These same movement-associated brain areas were also present in female songbirds that do not learn vocalizations and have atrophied cerebral vocal nuclei, and in ring doves that are vocal non-learners and do not have cerebral vocal nuclei. A compilation of previous neural tracing experiments in songbirds suggests that the movement-associated areas are connected in a network that is in parallel with the adjacent vocal learning system. This study is the first global mapping that we are aware for movement-associated areas of the avian cerebrum and it indicates that brain systems that control vocal learning in distantly related birds are directly adjacent to brain systems involved in movement control. Based upon these findings, we propose a motor theory for the origin of vocal learning, this being that the brain areas specialized for vocal learning in vocal learners evolved as a specialization of a pre-existing motor pathway that controls movement.
Resumo:
© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.A key component in calculations of exchange and correlation energies is the Coulomb operator, which requires the evaluation of two-electron integrals. For localized basis sets, these four-center integrals are most efficiently evaluated with the resolution of identity (RI) technique, which expands basis-function products in an auxiliary basis. In this work we show the practical applicability of a localized RI-variant ('RI-LVL'), which expands products of basis functions only in the subset of those auxiliary basis functions which are located at the same atoms as the basis functions. We demonstrate the accuracy of RI-LVL for Hartree-Fock calculations, for the PBE0 hybrid density functional, as well as for RPA and MP2 perturbation theory. Molecular test sets used include the S22 set of weakly interacting molecules, the G3 test set, as well as the G2-1 and BH76 test sets, and heavy elements including titanium dioxide, copper and gold clusters. Our RI-LVL implementation paves the way for linear-scaling RI-based hybrid functional calculations for large systems and for all-electron many-body perturbation theory with significantly reduced computational and memory cost.
Resumo:
Environmental governance is more effective when the scales of ecological processes are well matched with the human institutions charged with managing human-environment interactions. The social-ecological systems (SESs) framework provides guidance on how to assess the social and ecological dimensions that contribute to sustainable resource use and management, but rarely if ever has been operationalized for multiple localities in a spatially explicit, quantitative manner. Here, we use the case of small-scale fisheries in Baja California Sur, Mexico, to identify distinct SES regions and test key aspects of coupled SESs theory. Regions that exhibit greater potential for social-ecological sustainability in one dimension do not necessarily exhibit it in others, highlighting the importance of integrative, coupled system analyses when implementing spatial planning and other ecosystem-based strategies.
Resumo:
The FIRE Detection and Suppression Simulation (FIREDASS) project was concerned with the development of water misting systems as a possible replacement for halon based fire suppression systems currently used in aircraft cargo holds and ship engine rooms. As part of this program of work, a computational model was developed to assist engineers optimize the design of water mist suppression systems. The model is based on Computational Fluid Dynamics (CFD) and comprised of the following components: fire model; mist model; two-phase radiation model; suppression model; detector/activation model. In this paper the FIREDASS software package is described and the theory behind the fire and radiation sub-models is detailed. The fire model uses prescribed release rates for heat and gaseous combustion products to represent the fire load. Typical release rates have been determined through experimentation. The radiation model is a six-flux model coupled to the gas (and mist) phase. As part of the FIREDASS project, a detailed series of fire experiments were conducted in order to validate the fire model. Model predictions are compared with data from these experiments and good agreement is found.
Resumo:
In this paper, we address the use of CBR in collaboration with numerical engineering models. This collaborative combination has a particular application in engineering domains where numerical models are used. We term this domain “Case Based Engineering” (CBE), and present the general architecture of a CBE system. We define and discuss the general characteristics of CBE and the special problems which arise. These are: the handling of engineering constraints of both continuous and nominal kind; interpolation over both continuous and nominal variables, and conformability for interpolation. In order to illustrate the utility of the method proposed, and to provide practical examples of the general theory, the paper describes a practical application of the CBE architecture, known as CBE-CONVEYOR, which has been implemented by the authors.Pneumatic conveying is an important transportation technology in the solid bulks conveying industry. One of the major industry concerns is the attrition of powders and granules during pneumatic conveying. To minimize the fraction of particles during pneumatic conveying, engineers want to know what design parameters they should use in building a conveyor system. To do this, engineers often run simulations in a repetitive manner to find appropriate input parameters. CBE-Conveyor is shown to speed up conventional methods for searching for solutions, and to solve problems directly that would otherwise require considerable intervention from the engineer.
Resumo:
While E-learning technologies are continuously developing, there are number of emerging issues and challenges that have significant impact on e-learning research and design. These include educational, technological, sociological, and psychological viewpoints. The extant literature points out that a large number of existing E-learning systems have problems with offering reusable, personalized and learner-centric content. While developers are placing emphasis on the technology aspects of e-learning, critical conceptual and pedagogical issues are often ignored. This paper will reports on our research in design and development of personalised e-learning systems and some of the challenges and issues faced.
Resumo:
In Higher Education web-based course support systems are essential for supporting flexible learning environments. They provide tools to enable the interaction between student and tutor to reinforce transfer of theory to understanding particularly in an academic environment, therefore this paper will examine issues associated with the use of curriculum and learning resources within Web-based course support systems and the effectiveness of the resulting flexible learning environments This paper is a general discussion about flexible learning and in this case how it was applied to one of the courses at undergraduate level one. The first section will introduce what is flexible learning and the importance of flexible learning in Higher Education followed by the description of the course and why the flexible learning concepts is important in such a course and finally, how the flexibility was useful for this particular instance.
Resumo:
Whether a small cell, a small genome or a minimal set of chemical reactions with self-replicating properties, simplicity is beguiling. As Leonardo da Vinci reportedly said, 'simplicity is the ultimate sophistication'. Two diverging views of simplicity have emerged in accounts of symbiotic and commensal bacteria and cosmopolitan free-living bacteria with small genomes. The small genomes of obligate insect endosymbionts have been attributed to genetic drift caused by small effective population sizes (Ne). In contrast, streamlining theory attributes small cells and genomes to selection for efficient use of nutrients in populations where Ne is large and nutrients limit growth. Regardless of the cause of genome reduction, lost coding potential eventually dictates loss of function. Consequences of reductive evolution in streamlined organisms include atypical patterns of prototrophy and the absence of common regulatory systems, which have been linked to difficulty in culturing these cells. Recent evidence from metagenomics suggests that streamlining is commonplace, may broadly explain the phenomenon of the uncultured microbial majority, and might also explain the highly interdependent (connected) behavior of many microbial ecosystems. Streamlining theory is belied by the observation that many successful bacteria are large cells with complex genomes. To fully appreciate streamlining, we must look to the life histories and adaptive strategies of cells, which impose minimum requirements for complexity that vary with niche.
Resumo:
In line with recent incapacitative efforts aimed at dealing with dangerous people in the community, the Government has proposed a new indeterminate sentence to deal with the current gap in the law which exists in relation to dangerous individuals with untreatable severe personality disorders. However, these new measures have serious civil liberty implications and are largely unworkable in practice. It is suggested that rather than introducing these new powers it would be better to consider amending deficiencies which exist in the criminal justice and mental health systems in respect of the management of violent and sexual offenders.
Resumo:
This paper explores the law of accidental mixtures of goods. It traces the development of the English rules on mixture from the seminal nineteenth century case of Spence v Union Marine Insurance Co to the present day, and compares their responses to those given by the Roman law, which always has been claimed as an influence on our jurisprudence in this area. It is argued that the different answers given by English and Roman law to essentially the same problems of title result from the differing bases of these legal systems. Roman a priori theory is contrasted with the more practical reasoning of the common law, and while both sets of rules are judged to be coherent on their own terms, it is suggested that the difference between them is reflective of a more general philosophical disagreement about the proper functioning of a legal system, and the relative importance of theoretical and pragmatic considerations.
Resumo:
To predict where a catalytic reaction should occur is a fundamental issue scientifically. Technologically, it is also important because it can facilitate the catalyst's design. However, to date, the understanding of this issue is rather limited. In this work, two types of reactions, CH4 CH3 + H and CO C + 0 on two transition metal surfaces, were chosen as model systems aiming to address in general where a catalytic reaction should occur. The dissociations of CH4 - CH3 + H and CO --> C + O and their reverse reactions on flat, stepped, and kinked Rh and Pd surfaces were studied in detail. We find the following: First, for the CH4 Ch(3) + H reaction, the dissociation barrier is reduced by similar to0.3 eV on steps and kinks as compared to that on flat surfaces. On the other hand, there is essentially no difference in barrier for the association reaction of CH3 + H on the flat surfaces and the defects. Second, for the CO C + 0 reaction, the dissociation barrier decreases dramatically (more than 0.8 eV on Rh and Pd) on steps and kinks as compared to that on flat surfaces. In contrast to the CH3 + H reaction, the C + 0 association reaction also preferentially occurs on steps and kinks. We also present a detailed analysis of the reaction barriers in which each barrier is decomposed quantitatively into a local electronic effect and a geometrical effect. Our DFT calculations show that surface defects such as steps and kinks can largely facilitate bond breaking, while whether the surface defects could promote bond formation depends on the individual reaction as well as the particular metal. The physical origin of these trends is identified and discussed. On the basis of our results, we arrive at some simple rules with respect to where a reaction should occur: (i) defects such as steps are always favored for dissociation reactions as compared to flat surfaces; and (ii) the reaction site of the association reactions is largely related to the magnitude of the bonding competition effect, which is determined by the reactant and metal valency. Reactions with high valency reactants are more likely to occur on defects (more structure-sensitive), as compared to reactions with low valency reactants. Moreover, the reactions on late transition metals are more likely to proceed on defects than those on the early transition metals.
Resumo:
1. Barnacles are a good model organism for the study of open populations with space-limited recruitment. These models are applicable to other species with open supply of new individuals and resource limitation. The inclusion of space in models leads to reductions in recruitment with increasing density, and thus predictions of population size and stability are possible. 2. Despite the potential generality of a demographic theory for open space-limited populations, the models currently have a narrow empirical base. In this study, a model for an open population with space-limited recruitment was extended to include size-specific survival and promotions to any size class. The assumptions of this model were tested using data from a pan-European study of the barnacle Chthamalus montagui Southward. Two models were constructed: a 6-month model and a periodic annual model. Predicted equilibria and their stabilities were compared between shores. 3. Tests of model assumptions supported the extension of the theory to include promotions to any size class. Mortality was found to be size-specific and density independent. Studied populations were open, with recruitment proportional to free space. 4. The 6-month model showed a significant interaction between time and location for equilibrium free space. This may have been due to contrasts in the timing of structuring processes (i.e. creating and filling space) between Mediterranean and Atlantic systems. Integration of the 6-month models into a periodic annual model removed the differences in equilibrium-free space between locations. 5. Model predictions show a remarkable similarity between shores at a European scale. Populations were persistent and all solutions were stable. This reflects the apparent absence of density-dependent mortality and a high adult survivorship in C. montagui. As populations are intrinsically stable, observations of fluctuations in density are directly attributable to variations in the environmental forcing of recruitment or mortality
Resumo:
The analytic advantages of central concepts from linguistics and information theory, and the analogies demonstrated between them, for understanding patterns of retrieval from full-text indexes to documents are developed. The interaction between the syntagm and the paradigm in computational operations on written language in indexing, searching, and retrieval is used to account for transformations of the signified or meaning between documents and their representation and between queries and documents retrieved. Characteristics of the message, and messages for selection for written language, are brought to explain the relative frequency of occurrence of words and multiple word sequences in documents. The examples given in the companion article are revisited and a fuller example introduced. The signified of the sequence stood for, the term classically used in the definitions of the sign, as something standing for something else, can itself change rapidly according to its syntagm. A greater than ordinary discourse understanding of patterns in retrieval is obtained.