956 resultados para cross-section dependence
Resumo:
In 1980 the Beijing Observatory had successively observed sevesal rare completely closed ring prominences whose ring plane was approximately parallel to the solar surface with a characteristic life about 1—2 days. In this paper we discuss the static equilibrium of this kind of horizontal ring plasma under the simultaneous actions of magnetic force, gravity and pressure gradients. Assuming ring plasma with axisymmetry and rectangular plasma cross-section and adopting closed magnetic field boundary condition from the basic equations we obtain the exact zero order general solutions for magnetic field (force-free field) and density (pressure). We further obtain an eigen-solution for the zero order magnetic field and density as well as the first order magnetic field, thus giving a kind of the possible distribution of magnetic field and density for the horizontal closed ring prominence. The closed magnetic structure of ring prominence as presented in this paper, has no link with the force lines of the outside corona magnetic field. This is helpful to explain the great temperature difference between prominenee and corona.
Resumo:
This paper reviews the methods for measuring the economic cost of conflict. Estimating the economic costs of conflict requires a counterfactual calculation, which makes this a very difficult task. Social researchers have resorted to different estimation methods depending on the particular effect in question. The method used in each case depends on the units being analyzed (firms, sectors, regions or countries), the outcome variable under study (aggregate output, market valuation of firms, market shares, etc.) and data availability (a single cross-section, time series or panel data). This paper reviews existing methods used in the literature to assess the economic impact of conflict: cost accounting, cross-section methods, time series methods, panel data methods, gravity models, event studies, natural experiments and comparative case studies. The paper ends with a discussion of cost estimates and directions for further research.
Resumo:
不同形状微尺度管道(圆形、六边形、半圆形、不同宽高比的矩形)中的气体流动特性是微机电系统设计最为关心的问题之一.文中利用信息保存(IP)方法和直接模拟Monte Carlo(DSMC)方法进行研究,给出两种方法的计算结果相互符合,并与其它研究者的BGK模型方程计算结果进行了比较.对于微尺度管道中关心的低Mach数流动,IP方法的统计收敛效率明显优于DSMC方法,通过拟合IP和DSMC结果,给出了圆形、六边形、半圆形、不同宽高比的矩形截面情况下无量纲质量流率与等效Knudsen数的关系.
Resumo:
针对一阶畸变波Born近似模型,深入分析了湍流内外尺度和电子数密度脉动值对雷达散射截面的影响,并且给出了关于湍流外尺度的一个经验的,能被工程上较好使用的公式.在以上分析的基础上,计算了几种高程条件下再入小钝头锥体等离子尾迹的雷达散射截面,与已有实验结果进行了对比分析.分析和计算结果表明,湍流的外尺度和局部电子数密度值对雷达散射截面值影响较大;湍流内尺度变化的影响不大.
Resumo:
通过探讨高超声速再入湍流尾迹等离子体场中电磁波的散射机制,推导出在工程上描述湍流亚密等离子体雷达散射的一阶畸变波Born近似模型,分析了该模型在充分发展湍流尾迹等离子体场中的适用性,完成了适用于三维尾迹等离子体场的程序设计。以已有的湍流尾迹等离子体流场数据为基础,分析了再入尾迹湍流等离子体流动对雷达散射截面的影响。选取考察的几个有代表性的因素为:湍流模型、转捩过程、湍流尺度、电子组分脉动初始条件等。由结果可以看到,湍流转捩过程和湍流尺度对雷达散射截面值影响不大;电子组份脉动强度初始值影响较明显;湍流模型在特定条件下影响亦不大。
Resumo:
Homenaje al Dr. Armin U. Stylow.
Resumo:
The European Commission Report on Competition in Professional Services found that recommended prices by professional bodies have a significant negative effect on competition since they may facilitate the coordination of prices between service providers and/or mislead consumers about reasonable price levels. Professional associations argue, first, that a fee schedule may help their members to properly calculate the cost of services avoiding excessive charges and reducing consumers’ searching costs and, second, that recommended prices are very useful for cost appraisal if a litigant is condemned to pay the legal expenses of the opposing party. Thus, recommended fee schedules could be justified to some extent if they represented the cost of providing the services. We test this hypothesis using cross‐section data on a subset of recommended prices by 52 Spanish bar associations and cost data on their territorial jurisdictions. Our empirical results indicate that prices recommended by bar associations are unrelated to the cost of legal services and therefore we conclude that recommended prices have merely an anticompetitive effect.
Resumo:
Following the quantitative determination of dust cloud parameters, this study investigates the flame propagation through cornstarch dust clouds in a vertical duct of 780 mm height and 160 x 160 mm square cross section, and gives particular attention to the effect of small scale turbulence and small turbulence intensity on flame characteristics. Dust suspensions in air were produced using an improved apparatus ensuring more uniform distribution and repeatable dust concentrations in the testing duct. The dispersion-induced turbulence was measured by means of a particle image velocimetry (PIV) system, and dust concentrations were estimated by direct weighing method. This quantitative assessment made it possible to correlate observed flame behaviors with the parameters of the dust cloud. Upward propagating dust flames, from both closed/open bottom end to open/closed top end of the duct, were visualized by direct light and shadow photography. From the observation of propagation regimes and the measurements of flame velocity, a critical value of the turbulence intensity can be specified below which laminar flame propagation would be established. This transition condition was determined to be 10 cm/s. Laminar flames propagated with oscillations from the closed bottom end to the open top end of the testing duct, while the turbulent flames accelerated continuously. Both laminar and turbulent flames propagated with steady velocity from the open bottom end to the closed top end of the duct. The measured propagation velocity of laminar flames appeared to be in the range of 0.45-0.56 m/s, and it was consistent with the measurements reported in the literature. In the present experimental study, the influence of dust concentration on flame propagation was also examined, and the flame propagation velocity was found weakly sensitive to the variations in dust concentration. Some information on the flame structure was revealed from the shadow records, showing the typical heterogeneous feature of the dust combustion process.
Resumo:
An experimental investigation of Bénard-Marangoni convection has been performed in double immiscible liquid layers of rectangular configuration on the ground. The two kinds of liquid are 10cst silicon oil and FC-70 respectively. The size of rectangular chamber is 100mm×40mm in horizontal cross-section. The evolution processes of convection are observed in the differential thickness ratio of two liquid layers. The critical temperature difference was measured via the detections of fluid convection by a particle image velocimetry (PIV) in the vertical cross-section of the liquid layer. The critical temperature difference or the critical Marangoni number was given. And the influence of the thickness ratio of two liquid layers on the convection instability was discussed. The evolution processes of patterns and temperature distributions on the interface are displayed by using thermal liquid crystal. The velocity distributions on the interface were also obtained. In comparison with the thermocapillary effect, the effect of buoyancy convection will relatively increase when the depth of the liquid layer increases. Because of the coupling of buoyancy and thermocapillary effect, the convection instability is much more complex than that in the microgravity environment. And the critical convection depends on the change of the thickness of liquid layers and also the change of thickness ratio of two liquid layers.
Resumo:
In this paper,focusing of a toroidal shock wave propagating from a shock tube of an- nular cross-section into a cylindrical chamber was investigated numerically with the dispersion- controlled scheme. For CFD validation, the numerical code was rst applied to calculate both viscous and inviscid ows at a low Mach number of 1.5, which was compared with the experi- ment results and got better consistency. Then the validated code was used to calculate several cases for high Mach numbers. From the result, several major factors that in uent the ow, such as the Mach number and the viscosity, were analyzed detailedly and along with the high Mach number some unusual ow structure was observed and explained theoretically
Resumo:
In the present research work, the thermal capillary convection has been investigated and measured by particle image velocimetry (PIV) technique. There is one liquid layer in a rectangular cavity with different temperature’s sidewalls. The cavity is 52mm,42mm,20mm, 4mm in height of the silicon oil liquid layer. A sidewall of the cavity is heated by electro-thermal film, another sidewall is cooled by the semiconductor cooling sheet. The velocity field and the stream lines in cross section in liquid layer have been obtained at different temperature difference. The present experiment demonstrates that the pattern of the convection mainly relates with temperature difference.
Resumo:
Investigation of kerosene combustion in a Mach 2.5 flow was carried out using a model supersonic combustor with cross-section area of 51 mm?70 mm, with special emphases on the characterization of effervescent atomization and the flameholdering mechanism using different integrated fuel injector/flameholder cavity modules. Direct photography, Schlieren imaging, and Planar Laser Induced Fluorescence (PLIF) imaging of OH were utilized to examine the cavity characteristics and spray structure, with and without gas barbotage. Schlieren images illustrate the effectiveness of gas barbotage in facilitating atomization and the importance of secondary atomization when kerosene sprays interacting with a supersonic crossflow. OH-PLIF images further substantiate our previous finding that there exists a local high temperature radical pool within the cavity flameholder and this radical pool plays a crucial role in promoting kerosene combustion in a supersonic combustor. The present results also demonstrate that the cavity characteristics can be different in non-reacting and reacting supersonic flows. As such, the conventional definition of cavity characteristics based on non-reacting flows needs to be revised.
Resumo:
In this paper, the transition of a detonation from deflagration was investigated numerically while a detonation wave propagates in a tube with a sudden change in cross section, referred to as the expansion cavity. The dispersion-controlled scheme was adopted to solve Euler equations of axis-symmetric flows implemented with detailed chemical reaction kinetics of hydrogen-oxygen (or hydrogen-air) mixture. The fractional step method was applied to treat the stiff problems of chemical reaction flow. It is observed that phenomena of detonation quenching and reigniting appear when the planar detonation front diffracts at the vertex of the expansion cavity entrance. Numerical results show that detonation front in mixture of higher sensitivity keeps its substantial coupled structure when it propagates into the expansion cavity. However, the leading shock wave decouples with the combustion zone if mixture of lower sensitivity was set as the initial gas.
Resumo:
An optical diagnostic system consisting of the Michelson interferometer with the image processor has been developed for studying of the surface wave in the thermal capillary convection in a rectangular cavity. In this paper, the capillary convection, surface deformation and surface wave due to the different temperature between the two sidewalls have been investigated. The cavity is 52mm?42mm in horizontal cross section and 4mm in height. The temperature difference is increased gradually and flow in liquid layer will change from steady convection to unstable convection. The optical interference method measures the surface deformation and the surface wave of the convection. The deformation of the interference fringes, which produced by the meeting of the reflected light from the liquid surface and the reference light has been captured, and the surface deformation appears when the steady convection is developed. The surface deformation is enhanced with the increasing of the temperature difference, and then several knaggy peeks in the interference fringes appear and move from the heated side to the cooled side, it demonstrates that the surface wave is existed. The surface deformation, the wavelength, the frequency, and the wave amplitude of the surface wave have been calculated.
Resumo:
A visual observation of liquid-gas two-phase flow in anode channels of a direct methanol proton exchange membrane fuel cells in microgravity has been carried out in a drop tower. The anode flow bed consisted of 2 manifolds and 11 parallel straight channels. The length, width and depth of single channel with rectangular cross section was 48.0 mm, 2.5 mm and 2.0 mm, respectively. The experimental results indicated that the size of bubbles in microgravity condition is bigger than that in normal gravity. The longer the time, the bigger the bubbles. The velocity of bubbles rising is slower than that in normal gravity because buoyancy lift is very weak in microgravity. The flow pattern in anode channels could change from bubbly flow in normal gravity to slug flow in microgravity. The gas slugs blocked supply of reactants from channels to anode catalyst layer through gas diffusion layer. When the weakened mass transfer causes concentration polarization, the output performance of fuel cells declines.