987 resultados para cosmology, numerical simulations, dark matter, dark energy, initial conditions
Resumo:
Characteristic decay times for relaxation close to the marginal point of optical bistability are studied. A model-independent formula for the decay time is given which interpolates between Kramers time for activated decay and a deterministic relaxation time. This formula gives the decay time as a universal scaling function of the parameter which measures deviation from marginality. The standard deviation of the first-passage-time distribution is found to vary linearly with the decay time, close to marginality, with a slope independent of the noise intensity. Our results are substantiated by numerical simulations and their experimental relevance is pointed out.
Resumo:
The exponential coefficient in the first-passage-time problem for a bistable potential with highly colored noise is predicted to be (8/27 by all existing theories. On the other hand, we show herein that all existing numerical evidence seems to indicate that the coefficient is actually larger by about (4/3, i.e., that the numerical factor in the exponent is approximately (32/81. Existing data cover values of ¿V0/D up to ~20, where V0 is the barrier height, ¿ the correlation time of the noise, and D the noise intensity. We provide an explanation for the modified coefficinet, the explanation also being based on existing numerical simulations. Whether the value (8/27 predicted by all large-¿ theories is achieved for even larger values of ¿V0/D is unknown but appears questionable (except perhaps for enormously large, experimentally inaccessible values of this factor) in view of currently available results.
Resumo:
Vibration-based damage identification (VBDI) techniques have been developed in part to address the problems associated with an aging civil infrastructure. To assess the potential of VBDI as it applies to highway bridges in Iowa, three applications of VBDI techniques were considered in this study: numerical simulation, laboratory structures, and field structures. VBDI techniques were found to be highly capable of locating and quantifying damage in numerical simulations. These same techniques were found to be accurate in locating various types of damage in a laboratory setting with actual structures. Although there is the potential for these techniques to quantify damage in a laboratory setting, the ability of the methods to quantify low-level damage in the laboratory is not robust. When applying these techniques to an actual bridge, it was found that some traditional applications of VBDI methods are capable of describing the global behavior of the structure but are most likely not suited for the identification of typical damage scenarios found in civil infrastructure. Measurement noise, boundary conditions, complications due to substructures and multiple material types, and transducer sensitivity make it very difficult for present VBDI techniques to identify, much less quantify, highly localized damage (such as small cracks and minor changes in thickness). However, while investigating VBDI techniques in the field, it was found that if the frequency-domain response of the structure can be generated from operating traffic load, the structural response can be animated and used to develop a holistic view of the bridge’s response to various automobile loadings. By animating the response of a field bridge, concrete cracking (in the abutment and deck) was correlated with structural motion and problem frequencies (i.e., those that cause significant torsion or tension-compression at beam ends) were identified. Furthermore, a frequency-domain study of operational traffic was used to identify both common and extreme frequencies for a given structure and loading. Common traffic frequencies can be compared to problem frequencies so that cost-effective, preventative solutions (either structural or usage-based) can be developed for a wide range of IDOT bridges. Further work should (1) perfect the process of collecting high-quality operational frequency response data; (2) expand and simplify the process of correlating frequency response animations with damage; and (3) develop efficient, economical, preemptive solutions to common damage types.
Resumo:
We present analytical calculations of the turn-on-time probability distribution of intensity-modulated lasers under resonant weak optical feedback. Under resonant conditions, the external cavity round-trip time is taken to be equal to the modulation period. The probability distribution of the solitary laser results are modified to give reduced values of the mean turn-on-time and its variance. Numerical simulations have been carried out showing good agreement with the analytical results.
Resumo:
The performance of a device based on modified injection-locking techniques is studied by means of numerical simulations. The device incorporates master and slave configurations, each one with a DFB laser and an electroabsortion modulator (EAM). This arrangement allows the generation of high peak power, narrow optical pulses according to a periodic or pseudorandom bit stream provided by a current signal generator. The device is able to considerably increase the modulation bandwidth of free-running gain-switched semiconductor lasers using multiplexing in the time domain. Opportunities for integration in small packages or single chips are discussed.
Resumo:
Attempts to use a stimulated echo acquisition mode (STEAM) in cardiac imaging are impeded by imaging artifacts that result in signal attenuation and nulling of the cardiac tissue. In this work, we present a method to reduce this artifact by acquiring two sets of stimulated echo images with two different demodulations. The resulting two images are combined to recover the signal loss and weighted to compensate for possible deformation-dependent intensity variation. Numerical simulations were used to validate the theory. Also, the proposed correction method was applied to in vivo imaging of normal volunteers (n = 6) and animal models with induced infarction (n = 3). The results show the ability of the method to recover the lost myocardial signal and generate artifact-free black-blood cardiac images.
Resumo:
The Swift-Hohenberg equation is studied in the presence of a multiplicative noise. This stochastic equation could describe a situation in which a noise has been superimposed on the temperature gradient between the two plates of a Rayleigh-Bnard cell. A linear stability analysis and numerical simulations show that, in constrast to the additive-noise case, convective structures appear in a regime in which a deterministic analysis predicts a homogeneous solution.
Resumo:
We study the driving-rate and temperature dependence of the power-law exponents that characterize the avalanche distribution in first-order phase transitions. Measurements of acoustic emission in structural transitions in Cu-Zn-Al and Cu-Al-Ni are presented. We show how the observed behavior emerges within a general framework of competing time scales of avalanche relaxation, driving rate, and thermal fluctuations. We confirm our findings by numerical simulations of a prototype model.
Resumo:
The dynamics of an interface separating the two coexistent phases of a binary system in the presence of external fluctuations in temperature is studied. An interfacial instability is obtained for an interface that would be stable in the absence of fluctuations or in the presence of internal fluctuations. Analytical stability analysis and numerical simulations are in accordance with an explanation of these effects in terms of a quenchlike instability induced by fluctuations.
Resumo:
We present a study of a phase-separation process induced by the presence of spatially correlated multiplicative noise. We develop a mean-field approach suitable for conserved-order-parameter systems and use it to obtain the phase diagram of the model. Mean-field results are compared with numerical simulations of the complete model in two dimensions. Additionally, a comparison between the noise-driven dynamics of conserved and nonconserved systems is made at the level of the mean-field approximation.
Resumo:
In this paper, we present a model of a symmetric Brownian motor which changes the sign of its velocity when the temperature gradient is inverted. The velocity, external work, and efficiency are studied as a function of the temperatures of the baths and other relevant parameters. The motor shows a current reversal when another parameter (a phase shift) is varied. Analytical predictions and results from numerical simulations are performed and agree very well. Generic properties of this type of motor are discussed.
Resumo:
We study the dynamics of generic reaction-diffusion fronts, including pulses and chemical waves, in the presence of multiplicative noise. We discuss the connection between the reaction-diffusion Langevin-like field equations and the kinematic (eikonal) description in terms of a stochastic moving-boundary or sharp-interface approximation. We find that the effective noise is additive and we relate its strength to the noise parameters in the original field equations, to first order in noise strength, but including a partial resummation to all orders which captures the singular dependence on the microscopic cutoff associated with the spatial correlation of the noise. This dependence is essential for a quantitative and qualitative understanding of fluctuating fronts, affecting both scaling properties and nonuniversal quantities. Our results predict phenomena such as the shift of the transition point between the pushed and pulled regimes of front propagation, in terms of the noise parameters, and the corresponding transition to a non-Kardar-Parisi-Zhang universality class. We assess the quantitative validity of the results in several examples including equilibrium fluctuations and kinetic roughening. We also predict and observe a noise-induced pushed-pulled transition. The analytical predictions are successfully tested against rigorous results and show excellent agreement with numerical simulations of reaction-diffusion field equations with multiplicative noise.
Resumo:
The effect of external fluctuations on the formation of spatial patterns is analyzed by means of a stochastic Swift-Hohenberg model with multiplicative space-correlated noise. Numerical simulations in two dimensions show a shift of the bifurcation point controlled by the intensity of the multiplicative noise. This shift takes place in the ordering direction (i.e., produces patterns), but its magnitude decreases with that of the noise correlation length. Analytical arguments are presented to explain these facts.
Resumo:
A semiclassical coupled-wave theory is developed for TE waves in one-dimensional periodic structures. The theory is used to calculate the bandwidths and reflection/transmission characteristics of such structures, as functions of the incident wave frequency. The results are in good agreement with exact numerical simulations for an arbitrary angle of incidence and for any achievable refractive index contrast on a period of the structure.
Resumo:
The effects of a disordered medium in the growth of unstable interfaces are studied by means of two local models with multiplicative and additive quenched disorder, respectively. For short times and large pushing the multiplicative quenched disorder is equivalent to a time-dependent noise. In this regime, the linear dispersion relation contains a destabilizing contribution introduced by the noise. For long times, the interface always gets pinned. We model the systematics of the pinned shapes by means of an effective nonlinear model. These results show good agreement with numerical simulations. For the additive noise we find numerically that a depinning transition occurs.