966 resultados para citation analysis
Resumo:
Non-invasive vibration analysis has been used extensively to monitor the progression of dental implant healing and stabilization. It is now being considered as a method to monitor femoral implants in transfemoral amputees. This paper evaluates two modal analysis excitation methods and investigates their capabilities in detecting changes at the interface between the implant and the bone that occur during osseointegration. Excitation of bone-implant physical models with the electromagnetic shaker provided higher coherence values and a greater number of modes over the same frequency range when compared to the impact hammer. Differences were detected in the natural frequencies and fundamental mode shape of the model when the fit of the implant was altered in the bone. The ability to detect changes in the model dynamic properties demonstrates the potential of modal analysis in this application and warrants further investigation.
Resumo:
The goals of this research were to answer three questions. How predominant is religious searching online? How do people interact with Web search engines when searching for religious information? How effective are these interactions in locating relevant information? Specifically, referring to a US demographic, we analyzed five data sets from Web search engine, collected between 1997 and 2005, of over a million queries each in order to investigate religious searching on the Web. Results point to four key findings. First, there is no evidence of a decrease in religious Web-searching behaviors. Religious interest is a persistent topic of Web searching. Second, those seeking religious information on the Web are becoming slightly more interactive in their searching. Third, there is no evidence for a move away from mainstream religions toward non-mainstream religions since the majority of the search terms are associated with established religions. Fourth, our work does not support the hypothesis that traditional religious affiliation is associated with lower adoption of or sophistication with technology. These factors point to the Web as a potentially usefully communication medium for a variety of religious organizations. © 2009 Elsevier Ltd. All rights reserved.
Resumo:
Diversity techniques have long been used to combat the channel fading in wireless communications systems. Recently cooperative communications has attracted lot of attention due to many benefits it offers. Thus cooperative routing protocols with diversity transmission can be developed to exploit the random nature of the wireless channels to improve the network efficiency by selecting multiple cooperative nodes to forward data. In this paper we analyze and evaluate the performance of a novel routing protocol with multiple cooperative nodes which share multiple channels. Multiple shared channels cooperative (MSCC) routing protocol achieves diversity advantage by using cooperative transmission. It unites clustering hierarchy with a bandwidth reuse scheme to mitigate the co-channel interference. Theoretical analysis of average packet reception rate and network throughput of the MSCC protocol are presented and compared with simulated results.
Resumo:
In this study we set out to dissociate the developmental time course of automatic symbolic number processing and cognitive control functions in grade 1-3 British primary school children. Event-related potential (ERP) and behavioral data were collected in a physical size discrimination numerical Stroop task. Task-irrelevant numerical information was processed automatically already in grade 1. Weakening interference and strengthening facilitation indicated the parallel development of general cognitive control and automatic number processing. Relationships among ERP and behavioral effects suggest that control functions play a larger role in younger children and that automaticity of number processing increases from grade 1 to 3.
Resumo:
Online social networks can be found everywhere from chatting websites like MSN, blogs such as MySpace to social media such as YouTube and second life. Among them, there is one interesting type of online social networks, online dating network that is growing fast. This paper analyzes an online dating network from social network analysis point of view. Observations are made and results are obtained in order to suggest a better recommendation system for people-to-people networks.
Resumo:
Unstructured text data, such as emails, blogs, contracts, academic publications, organizational documents, transcribed interviews, and even tweets, are important sources of data in Information Systems research. Various forms of qualitative analysis of the content of these data exist and have revealed important insights. Yet, to date, these analyses have been hampered by limitations of human coding of large data sets, and by bias due to human interpretation. In this paper, we compare and combine two quantitative analysis techniques to demonstrate the capabilities of computational analysis for content analysis of unstructured text. Specifically, we seek to demonstrate how two quantitative analytic methods, viz., Latent Semantic Analysis and data mining, can aid researchers in revealing core content topic areas in large (or small) data sets, and in visualizing how these concepts evolve, migrate, converge or diverge over time. We exemplify the complementary application of these techniques through an examination of a 25-year sample of abstracts from selected journals in Information Systems, Management, and Accounting disciplines. Through this work, we explore the capabilities of two computational techniques, and show how these techniques can be used to gather insights from a large corpus of unstructured text.
Resumo:
Two-party key exchange (2PKE) protocols have been rigorously analyzed under various models considering different adversarial actions. However, the analysis of group key exchange (GKE) protocols has not been as extensive as that of 2PKE protocols. Particularly, an important security attribute called key compromise impersonation (KCI) resilience has been completely ignored for the case of GKE protocols. Informally, a protocol is said to provide KCI resilience if the compromise of the long-term secret key of a protocol participant A does not allow the adversary to impersonate an honest participant B to A. In this paper, we argue that KCI resilience for GKE protocols is at least as important as it is for 2PKE protocols. Our first contribution is revised definitions of security for GKE protocols considering KCI attacks by both outsider and insider adversaries. We also give a new proof of security for an existing two-round GKE protocol under the revised security definitions assuming random oracles. We then show how to achieve insider KCIR in a generic way using a known compiler in the literature. As one may expect, this additional security assurance comes at the cost of an extra round of communication. Finally, we show that a few existing protocols are not secure against outsider KCI attacks. The attacks on these protocols illustrate the necessity of considering KCI resilience for GKE protocols.
Resumo:
Overcoming many of the constraints to early stage investment in biofuels production from sugarcane bagasse in Australia requires an understanding of the complex technical, economic and systemic challenges associated with the transition of established sugar industry structures from single product agri-businesses to new diversified multi-product biorefineries. While positive investment decisions in new infrastructure requires technically feasible solutions and the attainment of project economic investment thresholds, many other systemic factors will influence the investment decision. These factors include the interrelationships between feedstock availability and energy use, competing product alternatives, technology acceptance and perceptions of project uncertainty and risk. This thesis explores the feasibility of a new cellulosic ethanol industry in Australia based on the large sugarcane fibre (bagasse) resource available. The research explores industry feasibility from multiple angles including the challenges of integrating ethanol production into an established sugarcane processing system, scoping the economic drivers and key variables relating to bioethanol projects and considering the impact of emerging technologies in improving industry feasibility. The opportunities available from pilot scale technology demonstration are also addressed. Systems analysis techniques are used to explore the interrelationships between the existing sugarcane industry and the developing cellulosic biofuels industry. This analysis has resulted in the development of a conceptual framework for a bagassebased cellulosic ethanol industry in Australia and uses this framework to assess the uncertainty in key project factors and investment risk. The analysis showed that the fundamental issue affecting investment in a cellulosic ethanol industry from sugarcane in Australia is the uncertainty in the future price of ethanol and government support that reduces the risks associated with early stage investment is likely to be necessary to promote commercialisation of this novel technology. Comprehensive techno-economic models have been developed and used to assess the potential quantum of ethanol production from sugarcane in Australia, to assess the feasibility of a soda-based biorefinery at the Racecourse Sugar Mill in Mackay, Queensland and to assess the feasibility of reducing the cost of production of fermentable sugars from the in-planta expression of cellulases in sugarcane in Australia. These assessments show that ethanol from sugarcane in Australia has the potential to make a significant contribution to reducing Australia’s transportation fuel requirements from fossil fuels and that economically viable projects exist depending upon assumptions relating to product price, ethanol taxation arrangements and greenhouse gas emission reduction incentives. The conceptual design and development of a novel pilot scale cellulosic ethanol research and development facility is also reported in this thesis. The establishment of this facility enables the technical and economic feasibility of new technologies to be assessed in a multi-partner, collaborative environment. As a key outcome of this work, this study has delivered a facility that will enable novel cellulosic ethanol technologies to be assessed in a low investment risk environment, reducing the potential risks associated with early stage investment in commercial projects and hence promoting more rapid technology uptake. While the study has focussed on an exploration of the feasibility of a commercial cellulosic ethanol industry from sugarcane in Australia, many of the same key issues will be of relevance to other sugarcane industries throughout the world seeking diversification of revenue through the implementation of novel cellulosic ethanol technologies.
Resumo:
Precise protein quantification is essential in clinical dietetics, particularly in the management of renal, burn and malnourished patients. The EP-10 was developed to expedite the estimation of dietary protein for nutritional assessment and recommendation. The main objective of this study was to compare the validity and efficacy of the EP-10 with the American Dietetic Association’s “Exchange List for Meal Planning” (ADA-7g) in quantifying dietary protein intake, against computerised nutrient analysis (CNA). Protein intake of 197 food records kept by healthy adult subjects in Singapore was determined thrice using three different methods – (1) EP-10, (2) ADA-7g and (3) CNA using SERVE program (Version 4.0). Assessments using the EP-10 and ADA-7g were performed by two assessors in a blind crossover manner while a third assessor performed the CNA. All assessors were blind to each other’s results. Time taken to assess a subsample (n=165) using the EP-10 and ADA-7g was also recorded. Mean difference in protein intake quantification when compared to the CNA was statistically non-significant for the EP-10 (1.4 ± 16.3 g, P = .239) and statistically significant for the ADA-7g (-2.2 ± 15.6 g, P = .046). Both the EP-10 and ADA-7g had clinically acceptable agreement with the CNA as determined via Bland-Altman plots, although it was found that EP-10 had a tendency to overestimate with protein intakes above 150 g. The EP-10 required significantly less time for protein intake quantification than the ADA-7g (mean time of 65 ± 36 seconds vs. 111 ± 40 seconds, P < .001). The EP-10 and ADA-7g are valid clinical tools for protein intake quantification in an Asian context, with EP-10 being more time efficient. However, a dietician’s discretion is needed when the EP-10 is used on protein intakes above 150g.
Resumo:
The Making Design and Analysing Interaction track at the Participatory Innovation Conference calls for submissions from ‘Makers’ who will contribute examples of participatory innovation activities documented in video and ‘Analysts’ who will analyse those examples of participatory innovation activity. The aim of this paper is to open up for a discussion within the format of the track of the roles that designers could play in analysing the participatory innovation activities of others and to provide a starting point for this discussion through a concrete example of such ‘designerly analysis’. Designerly analysis opens new analytic frames for understanding participatory innovation and contributes to our understanding of design activities.
Resumo:
Bioinformatics involves analyses of biological data such as DNA sequences, microarrays and protein-protein interaction (PPI) networks. Its two main objectives are the identification of genes or proteins and the prediction of their functions. Biological data often contain uncertain and imprecise information. Fuzzy theory provides useful tools to deal with this type of information, hence has played an important role in analyses of biological data. In this thesis, we aim to develop some new fuzzy techniques and apply them on DNA microarrays and PPI networks. We will focus on three problems: (1) clustering of microarrays; (2) identification of disease-associated genes in microarrays; and (3) identification of protein complexes in PPI networks. The first part of the thesis aims to detect, by the fuzzy C-means (FCM) method, clustering structures in DNA microarrays corrupted by noise. Because of the presence of noise, some clustering structures found in random data may not have any biological significance. In this part, we propose to combine the FCM with the empirical mode decomposition (EMD) for clustering microarray data. The purpose of EMD is to reduce, preferably to remove, the effect of noise, resulting in what is known as denoised data. We call this method the fuzzy C-means method with empirical mode decomposition (FCM-EMD). We applied this method on yeast and serum microarrays, and the silhouette values are used for assessment of the quality of clustering. The results indicate that the clustering structures of denoised data are more reasonable, implying that genes have tighter association with their clusters. Furthermore we found that the estimation of the fuzzy parameter m, which is a difficult step, can be avoided to some extent by analysing denoised microarray data. The second part aims to identify disease-associated genes from DNA microarray data which are generated under different conditions, e.g., patients and normal people. We developed a type-2 fuzzy membership (FM) function for identification of diseaseassociated genes. This approach is applied to diabetes and lung cancer data, and a comparison with the original FM test was carried out. Among the ten best-ranked genes of diabetes identified by the type-2 FM test, seven genes have been confirmed as diabetes-associated genes according to gene description information in Gene Bank and the published literature. An additional gene is further identified. Among the ten best-ranked genes identified in lung cancer data, seven are confirmed that they are associated with lung cancer or its treatment. The type-2 FM-d values are significantly different, which makes the identifications more convincing than the original FM test. The third part of the thesis aims to identify protein complexes in large interaction networks. Identification of protein complexes is crucial to understand the principles of cellular organisation and to predict protein functions. In this part, we proposed a novel method which combines the fuzzy clustering method and interaction probability to identify the overlapping and non-overlapping community structures in PPI networks, then to detect protein complexes in these sub-networks. Our method is based on both the fuzzy relation model and the graph model. We applied the method on several PPI networks and compared with a popular protein complex identification method, the clique percolation method. For the same data, we detected more protein complexes. We also applied our method on two social networks. The results showed our method works well for detecting sub-networks and give a reasonable understanding of these communities.
Resumo:
Complex networks have been studied extensively due to their relevance to many real-world systems such as the world-wide web, the internet, biological and social systems. During the past two decades, studies of such networks in different fields have produced many significant results concerning their structures, topological properties, and dynamics. Three well-known properties of complex networks are scale-free degree distribution, small-world effect and self-similarity. The search for additional meaningful properties and the relationships among these properties is an active area of current research. This thesis investigates a newer aspect of complex networks, namely their multifractality, which is an extension of the concept of selfsimilarity. The first part of the thesis aims to confirm that the study of properties of complex networks can be expanded to a wider field including more complex weighted networks. Those real networks that have been shown to possess the self-similarity property in the existing literature are all unweighted networks. We use the proteinprotein interaction (PPI) networks as a key example to show that their weighted networks inherit the self-similarity from the original unweighted networks. Firstly, we confirm that the random sequential box-covering algorithm is an effective tool to compute the fractal dimension of complex networks. This is demonstrated on the Homo sapiens and E. coli PPI networks as well as their skeletons. Our results verify that the fractal dimension of the skeleton is smaller than that of the original network due to the shortest distance between nodes is larger in the skeleton, hence for a fixed box-size more boxes will be needed to cover the skeleton. Then we adopt the iterative scoring method to generate weighted PPI networks of five species, namely Homo sapiens, E. coli, yeast, C. elegans and Arabidopsis Thaliana. By using the random sequential box-covering algorithm, we calculate the fractal dimensions for both the original unweighted PPI networks and the generated weighted networks. The results show that self-similarity is still present in generated weighted PPI networks. This implication will be useful for our treatment of the networks in the third part of the thesis. The second part of the thesis aims to explore the multifractal behavior of different complex networks. Fractals such as the Cantor set, the Koch curve and the Sierspinski gasket are homogeneous since these fractals consist of a geometrical figure which repeats on an ever-reduced scale. Fractal analysis is a useful method for their study. However, real-world fractals are not homogeneous; there is rarely an identical motif repeated on all scales. Their singularity may vary on different subsets; implying that these objects are multifractal. Multifractal analysis is a useful way to systematically characterize the spatial heterogeneity of both theoretical and experimental fractal patterns. However, the tools for multifractal analysis of objects in Euclidean space are not suitable for complex networks. In this thesis, we propose a new box covering algorithm for multifractal analysis of complex networks. This algorithm is demonstrated in the computation of the generalized fractal dimensions of some theoretical networks, namely scale-free networks, small-world networks, random networks, and a kind of real networks, namely PPI networks of different species. Our main finding is the existence of multifractality in scale-free networks and PPI networks, while the multifractal behaviour is not confirmed for small-world networks and random networks. As another application, we generate gene interactions networks for patients and healthy people using the correlation coefficients between microarrays of different genes. Our results confirm the existence of multifractality in gene interactions networks. This multifractal analysis then provides a potentially useful tool for gene clustering and identification. The third part of the thesis aims to investigate the topological properties of networks constructed from time series. Characterizing complicated dynamics from time series is a fundamental problem of continuing interest in a wide variety of fields. Recent works indicate that complex network theory can be a powerful tool to analyse time series. Many existing methods for transforming time series into complex networks share a common feature: they define the connectivity of a complex network by the mutual proximity of different parts (e.g., individual states, state vectors, or cycles) of a single trajectory. In this thesis, we propose a new method to construct networks of time series: we define nodes by vectors of a certain length in the time series, and weight of edges between any two nodes by the Euclidean distance between the corresponding two vectors. We apply this method to build networks for fractional Brownian motions, whose long-range dependence is characterised by their Hurst exponent. We verify the validity of this method by showing that time series with stronger correlation, hence larger Hurst exponent, tend to have smaller fractal dimension, hence smoother sample paths. We then construct networks via the technique of horizontal visibility graph (HVG), which has been widely used recently. We confirm a known linear relationship between the Hurst exponent of fractional Brownian motion and the fractal dimension of the corresponding HVG network. In the first application, we apply our newly developed box-covering algorithm to calculate the generalized fractal dimensions of the HVG networks of fractional Brownian motions as well as those for binomial cascades and five bacterial genomes. The results confirm the monoscaling of fractional Brownian motion and the multifractality of the rest. As an additional application, we discuss the resilience of networks constructed from time series via two different approaches: visibility graph and horizontal visibility graph. Our finding is that the degree distribution of VG networks of fractional Brownian motions is scale-free (i.e., having a power law) meaning that one needs to destroy a large percentage of nodes before the network collapses into isolated parts; while for HVG networks of fractional Brownian motions, the degree distribution has exponential tails, implying that HVG networks would not survive the same kind of attack.
Resumo:
Organizations seeking improvements in their performance are increasingly exploring alternative models and approaches for providing support services; one such approach being Shared Services. Because of the possible consequential impact of Shared Services on organizations, and given that information systems (IS) is both an enabler of Shared Services (for other functional areas) as well as a promising area for Shared Services application, Shared Services is an important area for research in the IS field. Though Shared Services has been extensively adopted on the promise of economies of scale and scope, factors of Shared Services success (or failure) have received little research attention. This paper reports the distillation of success and failure factors of Shared Services from an IS perspective. Employing NVIVO and content analysis of 158 selected articles, 9 key success factors and 5 failure factors are identified, suggesting important implications for practice and further research.
Resumo:
This article continues the critical analysis of ‘meaningful relationships’ in the context of the operation of the ‘twin pillars’ which underpin the parenting provisions. It will be argued that the attitude of judicial officers to three key questions influence how they interpret this concept and consequently apply the best interest considerations. Relevant to this discussion is an examination of the Full Court’s approach to the key parenting sections, particularly the interaction of the primary and additional considerations. Against this backdrop, a current proposal to amend the ‘twin pillars’ will be examined.
Resumo:
In many “user centred design” methods, participants are used as informants to provide data but they are not involved in further analysis of that data. This paper investigates a participatory analysis approach in order to identify the strengths and weaknesses of involving participants collaboratively in the requirements analysis process. Findings show that participants are able to use information that they themselves have provided to analyse requirements and to draw upon that analysis for design, producing insights and suggestions that might not have been available otherwise to the design team. The contribution of this paper is to demonstrate an example of a participatory analysis process.