966 resultados para choline chloride
Resumo:
AIMS: High-mobility group box 1 (HMGB1) is a nuclear protein actively secreted by immune cells and passively released by necrotic cells that initiates pro-inflammatory signalling through binding to the receptor for advance glycation end-products. HMGB1 has been established as a key inflammatory mediator during myocardial infarction, but the proximal mechanisms responsible for myocardial HMGB1 expression and release in this setting remain unclear. Here, we investigated the possible involvement of peroxynitrite, a potent cytotoxic oxidant formed during myocardial infarction, on these processes. METHODS AND RESULTS: The ability of peroxynitrite to induce necrosis and HMGB1 release in vitro was evaluated in H9c2 cardiomyoblasts and in primary murine cardiac cells (myocytes and non-myocytes). In vivo, myocardial HMGB1 expression and nitrotyrosine content (a marker of peroxynitrite generation) were determined following myocardial ischaemia and reperfusion in rats, whereas peroxynitrite formation was inhibited by two different peroxynitrite decomposition catalysts: 5,10,15,20-tetrakis(4-sulphonatophenyl) porphyrinato iron (III) (FeTPPS) or Mn(III)-tetrakis(4-benzoic acid) porphyrin chloride (MnTBAP). In all types of cells studied, peroxynitrite (100 μM) elicited significant necrosis, the loss of intracellular HMGB1, and its passive release into the medium. In vivo, myocardial ischaemia-reperfusion induced significant myocardial necrosis, cardiac nitrotyrosine formation, and marked overexpression of myocardial HMGB1. FeTPPS reduced nitrotyrosine, decreased infarct size, and suppressed HMGB1 overexpression, an effect that was similarly obtained with MnTBAP. CONCLUSION: These findings indicate that peroxynitrite represents a key mediator of HMGB1 overexpression and release by cardiac cells and provide a novel mechanism linking myocardial oxidative/nitrosative stress with post-infarction myocardial inflammation.
Resumo:
The concentrations of the general neuronal markers D2-protein (N-CAM), D3-protein and neuron specific enolase (NSE) in reaggregating cultures of fetal rat telencephalon cells were affected by the presence of 30 nM triiodothyronine in the defined culture medium. The extent of normal developmental changes were enhanced by triiodothyronine, as demonstrated by crossed immunoelectrophoresis. From 13 to 19 days in culture, the concentration of D2-protein decreased, and the concentrations of both D3-protein and NSE increased. Nerve growth factor (NGF) was without effect on the development of these general neuronal markers. However, as shown previously both triiodothyronine and NGF increased the activity of choline acetyltransferase, a marker for cholinergic neurons. The results suggest an enhanced overall differentiation of several types of telencephalon neurons in the presence of triiodothyronine, and a specific stimulation of cholinergic telencephalon neurons by NGF.
Resumo:
Digital holographic microscopy (DHM) is a noninvasive optical imaging technique that provides quantitative phase images of living cells. In a recent study, we showed that the quantitative monitoring of the phase signal by DHM was a simple label-free method to study the effects of glutamate on neuronal optical responses (Pavillon et al., 2010). Here, we refine these observations and show that glutamate produces the following three distinct optical responses in mouse primary cortical neurons in culture, predominantly mediated by NMDA receptors: biphasic, reversible decrease (RD) and irreversible decrease (ID) responses. The shape and amplitude of the optical signal were not associated with a particular cellular phenotype but reflected the physiopathological status of neurons linked to the degree of NMDA activity. Thus, the biphasic, RD, and ID responses indicated, respectively, a low-level, a high-level, and an "excitotoxic" level of NMDA activation. Moreover, furosemide and bumetanide, two inhibitors of sodium-coupled and/or potassium-coupled chloride movement strongly modified the phase shift, suggesting an involvement of two neuronal cotransporters, NKCC1 (Na-K-Cl) and KCC2 (K-Cl) in the genesis of the optical signal. This observation is of particular interest since it shows that DHM is the first imaging technique able to monitor dynamically and in situ the activity of these cotransporters during physiological and/or pathological neuronal conditions.
Resumo:
A Knudsen flow reactor has been used to quantify functional groups on the surface of seven different types of combustion particle samples: 3 amorphous carbons (FS 101, Printex 60, FW 2), 2 flame soots (hexane soot generated from a rich and a lean diffusion flame), and 2 Diesel particles (SRM 2975, Diesel soot recovered from a Diesel particulate filter). The technique is based on a heterogeneous titration reaction between a probe gas and a specific functional group on the particle surface. Six probe gases have been selected for the quantification of important functional groups: N(CH3)3 for the titration of acidic sites, NH2OH for carbonyl functions of aldehydes and ketones, CF3COOH and HCl for basic sites of different strength, O3 and NO2 for oxidizable groups. The limit of detection was generally well below 1% of a formal monolayer of adsorbed probe gas. Results obtained with N(CH3)3 were higher for the FW 2 amorphous carbon (post-oxidized sample, according to the manufacturer) and the Diesel particles (between 5.2·10 13 and 5.8·10 13 molecule/cm2), indicating a higher state of oxidation than for the other samples (between 1.3·10 12 and 3.7·10 12 molecule/cm2). The ratio of uptakes of CF3COOH and HCl inferred the presence of basic oxides on the particle surface, owing to the larger stability of the acetate compared to the chloride counter ion in the resulting pyrylium salt. The reactivity of the FS 101 amorphous carbon (3.7·10 15 molecule/cm2) and the hexane flame soot (between 1.9·10 15 and 2.7·10 15 molecule/cm2) towards O3 was very high, indicating the presence of a huge amount of oxidizable or reduced groups on the surface of these samples. Besides the quantification of surface functional groups, the kinetics of reactions between particles and probe gases has also been studied. The uptake coefficient γ0 was roughly correlated with the amount of probe gas taken up by the samples. Indeed, the presence of a high density of functional groups led to fast uptake of the probe gas. These different findings indicate that the particle surface appeared multi-functional, with the simultaneous presence of antagonistic functional groups which do not undergo internal chemical reactions, such as acid-base neutralization. Results also point to important differences in the surface reactivity of the samples, depending on the combustion conditions. The relative distribution of the surface functional groups may be a useful indicator for the state of oxidation and the reactivity of the particle surface.
Enhanced visuospatial memory following intracerebroventricular administration of nerve growth factor
Resumo:
The present work assessed the effects of intracerebroventricular injections of rh recombined human nerve growth factor (rh NGF) (5 micrograms/2.5 microl) at postnatal days 12 and 13 upon the development of spatial learning capacities. The treated rats were trained at the age of 22 days to escape onto an invisible platform at a fixed position in space in a Morris navigation task. For half of the subjects, the training position was also cued, a procedure aimed at facilitating escape and at reducing attention to the distant spatial cues. Later, at the age of 6 months, all the rats were trained in a radial-arm maze task. Treatment effects were found in both immature and adult rats. The injection of NGF improved the performance in the Morris navigation task in both training conditions. There was a significant reduction in the escape latency and an increased bias toward the training platform quadrant during probe trials. The most consistent effect was the precocious development of an adult-like spatial memory. In the radial-arm maze, the NGF-treated rats made significantly fewer reentries than vehicle rats and this effect was particularly marked in the treated female rats. Taken together, these experiments reveal that the development and the maintenance of an accurate spatial representation are tightly related to the development of brain structures facilitated by the action of NGF. Moreover, these experiments demonstrate that an acute pharmacological treatment that leads to a transient modification in the choline acetyltransferase activity can induce a behavioral change long after the treatment.
Resumo:
A gas chromatographic-mass spectrometric method is presented which allows the simultaneous determination of the plasma concentrations of fluvoxamine and of the enantiomers of fluoxetine and norfluoxetine after derivatization with the chiral reagent, (S)-(-)-N-trifluoroacetylprolyl chloride. No interference was observed from endogenous compounds following the extraction of plasma samples from six different human subjects. The standard curves were linear over a working range of 10 to 750 ng/ml for racemic fluoxetine and norfluoxetine and of 50 to 500 ng/ml for fluvoxamine. Recoveries ranged from 50 to 66% for the three compounds. Intra- and inter-day coefficients of variation ranged from 4 to 10% for fluvoxamine and from 4 to 13% for fluoxetine and norfluoxetine. The limits of quantitation of the method were found to be 2 ng/ml for fluvoxamine and 1 ng/ml for the (R)- and (S)-enantiomers of fluoxetine and norfluoxetine, hence allowing its use for single dose pharmacokinetics. Finally, by using a steeper gradient of temperature, much shorter analysis times are obtained if one is interested in the concentrations of fluvoxamine alone.
Resumo:
An in vitro model, the aggregating brain cell culture of fetal rat telencephalon, has been used to study the maturation-dependent sensitivity of brain cells to two organophosphorus pesticides (OPs), chlorpyrifos and parathion, and to their oxon derivatives. Immature (DIV 5-15) or differentiated (DIV 25-35) brain cells were treated continuously for 10 days. Acetylcholinesterase (AChE) inhibitory potency for the OPs was compared to that of eserine (physostigmine), a reversible AChE inhibitor. Oxon derivatives were more potent AChE inhibitors than the parent compounds, and parathion was more potent than chlorpyrifos. No maturation-dependent differences for AChE inhibition were found for chlorpyrifos and eserine, whereas for parathion and paraoxon there was a tendency to be more effective in immature cultures, while the opposite was true for chlorpyrifos-oxon. Toxic effects, assessed by measuring protein content as an index of general cytotoxicity, and various enzyme activities as cell-type-specific neuronal and glial markers (ChAT and GAD, for cholinergic and GABAergic neurons, respectively, and GS and CNP, for astrocytes and oligodendrocytes, respectively) were only found at more than 70% of AChE inhibition. Immature compared to differentiated cholinergic neurons appeared to be more sensitive to OP treatments. The oxon derivates were found to be more toxic on neurons than the parent compounds, and chlorpyrifos was more toxic than parathion. Eserine was not neurotoxic. These results indicate that inhibition of AChE remains the most sensitive macromolecular target of OP exposure, since toxic effects were found at concentrations in which AChE was inhibited. Furthermore, the compound-specific reactions, the differential pattern of toxicity of OPs compared to eserine, and the higher sensitivity of immature brain cells suggest that the toxic effects and inhibition of AChE are unrelated.
Resumo:
Abstract OBJECTIVE Determining which is the most effective solution (heparin flush compared to 0.9% saline flush) for reducing the risk of occlusions in central venous catheters (CVC) in adults. METHOD The systematic review followed the principles proposed by the Cochrane Handbook; critical analysis, extraction and synthesis of data were performed by two independent researchers; statistical analysis was performed using the RevMan program 5.2.8. RESULTS Eight randomized controlled trials and one cohort study were included and the results of the meta-analysis showed no difference (RR=0.68, 95% CI=0.41-1.10; p=0.12). Analysis by subgroups showed that there was no difference in fully deployed CVC (RR=1.09, CI 95%=0.53-2.22;p=0.82); Multi-Lumen CVC showed beneficial effects in the heparin group (RR=0.53, CI 95%=0.29-0.95; p=0.03); in Double-Lumen CVC for hemodialysis (RR=1.18, CI 95%=0.08-17.82;p=0.90) and Peripherally inserted CVC (RR=0.14, CI 95%=0.01-2.60; p=0.19) also showed no difference. CONCLUSION Saline solution is sufficient for maintaining patency of the central venous catheter, preventing the risks associated with heparin administration.
Resumo:
: Objectives Physicochemical incompatibilities between intravenous drugs are a recurrent problem in intensive care units. The present study was aimed at investigating the physical compatibility of remifentanil and sufentanil with other drugs (insulin, midazolam, propofol, potassium chloride, magnesium sulfate, furosemide, heparin, monobasic potassium phosphate) that are frequently administered together intravenously. In addition, the physicochemical compatibility of three common associations of drugs was evaluated in glass tube tests and during dynamic simulated Y site administrations (remifentanil-insulin-midazolam; remifentanil-insulin-propofol; sufentanil-insulin-midazolam). Methods Physical compatibility was verified by visual inspection of the various mixtures (two, three or four drugs) in glass tubes and by pH determination of the mixtures collected during simulated Y site administrations. Solutions were considered as compatible in the absence of any visual change in the solution and of any significant variation in pH value. In addition, chemical stability was checked during in vitro dynamic simulations. The solutions were prepared in 50 ml syringes, placed on syringe pumps and connected to a Swan-Ganz catheter; the liquid collected at the tip was assayed by high performance liquid chromatography. Results In the visual examinations, only the associations of remifentanil and furosemide were incompatible. The three assayed associations were compatible in the tested proportion range over 24 h. Conclusions Remifentanil was physically compatible with the tested drugs, except for furosemide (Lasix; Sanofi-Aventis, 250 mg/25 ml) and physicochemically compatible with insulin and midazolam and insulin and propofol. Sufentanil was physically compatible with all tested drugs and physicochemically compatible with insulin and midazolam
Resumo:
We hypothesized that acute volume expansion by saline infusion triggers the release of endothelin-1. Bolus intravenous saline infusion (8 mL/min) in six groups of conscious Wistar rats and spontaneously hypertensive rats did not change mean arterial pressure or heart rate (n = 8 to 12). At 1 min after infusion, the plasma endothelin-1 level was significantly increased in Wistar rats and in spontaneously hypertensive rats by 42% and 61%, respectively (unpaired data). In 12 Wistar rats, the endothelin-1 level increased from 0.68 +/- 0.13 to 1.19 +/- 0.17 fmol/mL (mean +/- SEM, P <.0001, paired data). Thus, acute volume load by rapid saline infusion increases plasma endothelin-1 levels. Vasoconstriction induced by endothelin-1 may counteract enhanced circumferential stretch created by volume expansion.
Resumo:
An in vitro model, the aggregating brain cell culture of fetal rat telencephalon, has been used to investigate the influence of glial cells on the neurotoxicity of two organophosphorus pesticides (OPs), chlorpyrifos and parathion. Mixed-cell aggregate cultures were treated continuously for 10 days between DIV 5 and 15. Parathion induced astrogliosis at concentration at which MAP-2 immunostaining, found here to be more sensitive than neuron-specific enzyme activities, was not affected. In contrast, chlorpyrifos induced a comparatively weak gliotic reaction, and only at concentrations at which neurons were already affected. After similar treatments, increased neurotoxicity of parathion and chlorpyrifos was found in aggregate cultures deprived of glial cells. These results suggest that glial cells provide neuroprotection against OPs toxicity. To address the question of the difference in toxicity between parathion and chlorpyrifos, the toxic effects of their leaving groups, p-nitrophenol and trichloropyridinol, were studied in mixed-cell aggregates. General cytotoxicity was more pronounced for trichloropyridinol and both compounds had similar toxic effects on neuron-specific enzyme activities. In contrast, trichloropyridinol induced a much stronger decrease in glutamine synthetase activity, the enzymatic marker of astrocytes. Trichloropyridinol may exert a toxic effect on astrocytes, compromising their neuroprotective function, thus exacerbating the neurotoxicity of chlorpyrifos. This is in line with the suggestion that glial cells may contribute to OPs neurotoxicity, and with the view that OPs may exert their neurotoxic effects through different mechanisms.
Resumo:
Cabo Verde é constituído por 10 ilhas, sendo a ilha do Maio a mais antiga do arquipélago, com uma área de 269 km2, tendo como comprimento máximo 24100 m, uma largura máxima de 16300 m e uma população total de 6740 habitantes. No que concerne à geomorfologia e geologia, a ilha é considerada plana e é composta por formações eruptivas e sedimentares, sendo as formações sedimentares dominantes na ilha. Apresenta as formações mais antigas de Cabo Verde, de idade jurássica e cretácica. No entanto, não apresenta as formações eruptivas mais recentes como as restantes ilhas. A ilha do Maio enquadra-se num clima do tipo árido e semiárido, com uma temperatura média de 24.5 ºC e uma precipitação anual de 125.4 mm. Estimativas efectuadas com base no modelo do balanço hídrico sequencial diário mostram que cerca de 7% da precipitação corresponde a escoamento superficial e 14.1% a escoamento subterrâneo. Pela aplicação deste modelo e do método do balanço químico do ião cloreto, os recursos hídricos subterrâneos renováveis anualmente na ilha do Maio estão, em ano médio, compreendidos entre 3.44 x 106 m3 e 4.76 x 106 m3.por sua vez, o escoamento total é estimado em 7.8 x 106 m3 anuais, o que equivale a cerca de 21 400 m3/dia. O escoamento subterrâneo na ilha do Maio faz-se globalmente de um modo centrífugo a partir das elevações do maciço central. O gradiente hidráulico assume valores entre 0.05% e 2.9%, sendo que o valor mais baixo ocorre no sector norte da ilha, o que favorece o fenómeno de intrusão salina. Relativamente à qualidade da água, verifica-se que as amostras recolhidas correspondem a águas muito mineralizadas, com valores de condutividade eléctrica compreendidos entre 832 μS/cm e 7730 μS/cm. Por sua vez, os valores de TDS estão compreendidos entre 705.8 mg/L e 4210.4 mg/L. Nestas condições, as águas subterrâneas analisadas podem ser consideradas águas salobras. A fácies hidroquímica dominante é a cloretada sódica, sendo que grande parte das amostras pode ser considerada cloretada-bicarbonatada sódica. Admitindo que a amostragem efectuada tem significado estatístico, poderá dizer-se que, a nível físico-químico, cerca de 20% das águas subterrâneas são próprias para o consumo humano. No que respeita à utilização da água para rega, as águas analisadas apresentam baixo a alto perigo de alcalinização do solo e alto a muito alto perigo de salinização. Em síntese, pode concluir-se que, não obstante o carácter árido da ilha do Maio, a mesma apresenta um potencial de recursos hídricos não negligenciável, eventualmente suficiente para suprir as necessidades hídricas da população. No entanto, o estudo desenvolvido mostra a necessidade de implementar medidas susceptíveis de proporcionarem um aproveitamento sustentado dos recursos hídricos, no quadro da gestão integrada dos recursos hídricos da ilha do Maio.
Resumo:
A previous study has shown the possibility to identify methane (CH4 ) using headspace-GC-MS and quantify it with a stable isotope as internal standard. The main drawback of the GC-MS methods discussed in literature for CH4 measurement is the absence of a specific internal standard necessary to perform quantification. However, it becomes essential to develop a safer method to limit the manipulation of gaseous CH4 and to precisely control the injected amount of gas for spiking and calibration by comparison with external calibration. To avoid the manipulation of a stable isotope-labeled gas, we have chosen to generate a labeled gas as an internal standard in a vial on the basis of the formation of CH4 by the reaction of Grignard reagent methylmagnesium chloride with deuterated water. This method allows precise measurement of CH4 concentrations in gaseous sample as well as in a solid or a liquid sample after a thermodesorption step in a headspace vial. A full accuracy profile validation of this method is then presented.