920 resultados para antisense RNA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genome-wide DNA remodelling in the ciliate Paramecium is ensured by RNA-mediated trans-nuclear crosstalk between the germline and the somatic genomes during sexual development. The rearrangements include elimination of transposable elements, minisatellites and tens of thousands non-coding elements called internally eliminated sequences (IESs). The trans-nuclear genome comparison process employs a distinct class of germline small RNAs (scnRNAs) that are compared against the parental somatic genome to select the germline-specific subset of scnRNAs that subsequently target DNA elimination in the progeny genome. Only a handful of proteins involved in this process have been identified so far and the mechanism of DNA targeting is unknown. Here we describe chromatin assembly factor-1-like protein (PtCAF-1), which we show is required for the survival of sexual progeny and localizes first in the parental and later in the newly developing macronucleus. Gene silencing shows that PtCAF-1 is required for the elimination of transposable elements and a subset of IESs. PTCAF-1 depletion also impairs the selection of germline-specific scnRNAs during development. We identify specific histone modifications appearing during Paramecium development which are strongly reduced in PTCAF-1 depleted cells. Our results demonstrate the importance of PtCAF-1 for the epigenetic trans-nuclear cross-talk mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Histone pre-mRNA 3' processing is controlled by a hairpin element preceding the processing site that interacts with a hairpin-binding protein (HBP) and a downstream spacer element that serves as anchoring site for the U7 snRNP. In addition, the nucleotides following the hairpin and surrounding the processing site (ACCCA'CA) are conserved among vertebrate histone genes. Single to triple nucleotide mutations of this sequence were tested for their ability to be processed in nuclear extract from animal cells. Changing the first four nucleotides had no qualitative and little if any quantitative effects on histone RNA 3' processing in mouse K21 cell extract, where processing of this gene is virtually independent of the HBP. A gel mobility shift assay revealing HBP interactions and a processing assay in HeLa cell extract (where the contribution of HBP to efficient processing is more important) showed that only one of these mutations, predicted to extend the hairpin by one base pair, affected the interaction with HBP. Mutations in the next three nucleotides affected both the cleavage efficiency and the choice of processing sites. Analysis of these novel sites indicated a preference for the nucleotide 5' of the cleavage site in the order A > C > U > G. Moreover, a guanosine in the 3' position inhibited cleavage. The preference for an A is shared with the cleavage/polyadenylation reaction, but the preference order for the other nucleotides is different [Chen F, MacDonald CC, Wilusz J, 1995, Nucleic Acids Res 23:2614-2620].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hairpin structure at the 3' end of animal histone mRNAs controls histone RNA 3' processing, nucleocytoplasmic transport, translation and stability of histone mRNA. Functionally overlapping, if not identical, proteins binding to the histone RNA hairpin have been identified in nuclear and polysomal extracts. Our own results indicated that these hairpin binding proteins (HBPs) bind their target RNA as monomers and that the resulting ribonucleoprotein complexes are extremely stable. These features prompted us to select for HBP-encoding human cDNAs by RNA-mediated three-hybrid selection in Saccharomyces cerevesiae. Whole cell extract from one selected clone contained a Gal4 fusion protein that interacted with histone hairpin RNA in a sequence- and structure-specific manner similar to a fraction enriched for bovine HBP, indicating that the cDNA encoded HBP. DNA sequence analysis revealed that the coding sequence did not contain any known RNA binding motifs. The HBP gene is composed of eight exons covering 19.5 kb on the short arm of chromosome 4. Translation of the HBP open reading frame in vitro produced a 43 kDa protein with RNA binding specificity identical to murine or bovine HBP. In addition, recombinant HBP expressed in S. cerevisiae was functional in histone pre-mRNA processing, confirming that we have indeed identified the human HBP gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three U7 RNA-related sequences were isolated from mouse genomic DNA libraries. Only one of the sequences completely matches the published mouse U7 RNA sequence, whereas the other two apparently represent pseudogenes. The matching sequence represents a functional gene, as it is expressed after microinjection into Xenopus laevis oocytes. Sequence variations of the conserved cis-acting 5' and 3' elements of U RNA genes may partly explain the low abundance of U7 RNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small non-protein-coding RNA (ncRNA) molecules represent major contributors to regulatory networks in controlling gene expression in a highly efficient manner. All of the recently discovered regulatory ncRNAs that act on translation (e.g. microRNAs, siRNAs or antisense RNAs) target the mRNA rather than the ribosome. To address the question, whether small ncRNA regulators exist that are capable of modulating the rate of protein production by directly interacting with the ribosome, we have analyzed the small ncRNA interactomes of ribosomes Deep-sequencing and subsequent bioinformatic analyses revealed thousands of putative ribosome-associated ncRNAs in various model organisms (1,2). For a subset of these ncRNA candidates we have gathered experimental evidence that they associate with ribosomes in a stress-dependent manner and are capable of regulating gene expression by fine-tuning the rate of protein biosynthesis (3,4). Many of the investigated ribosome-bound small ncRNA appear to be processing products from larger functional RNAs, such as tRNAs (2,3) or mRNAs (3). Post-transcriptional cleavage of RNA molecules to generate smaller fragments is a widespread mechanism that enlarges the structural and functional complexity of cellular RNomes. Our data reveal the ribosome as a target for small regulatory ncRNAs and demonstrate the existence of a yet unknown mechanism of translation regulation. Ribosome-associated ncRNAs (rancRNAs) are found in all domains of life and represent a prevalent but so far largely unexplored class of regulatory molecules (5). Future work on the small ncRNA interactomes of ribosomes in a variety of model systems will allow deeper insight into the conservation and functional repertoire of this emerging class of regulatory ncRNA molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small non-protein-coding RNA (ncRNA) molecules represent major contributors to regulatory networks in controlling gene expression in a highly efficient manner. Most of the recently discovered regulatory ncRNAs acting on translation target the mRNA rather than the ribosome (e.g.: miRNAs, siRNAs, antisense RNAs). To address the question, whether ncRNA regulators exist that are capable of modulating the rate of protein production by directly interacting with the ribosome, we have analyzed the small ncRNA interactomes of ribosomes. Deep-sequencing analyses revealed thousands of putative rancRNAs in various model organisms (1,2). For a subset of these ncRNA candidates we have gathered experimental evidence that they associate with ribosomes in a stress-dependent manner and fine-tune the rate of protein biosynthesis (3,4). Many of the investigated rancRNAs appear to be processing products of larger functional RNAs, such as tRNAs (2,3), mRNAs (3), or snoRNAs (2). Post-transcriptional cleavage of RNA to generate smaller fragments is a widespread mechanism that enlarges the structural and functional complexity of cellular RNomes. Our data disclose the ribosome as target for small regulatory RNAs. rancRNAs are found in all domains of life and represent a prevalent but so far largely unexplored class of regulatory molecules (5). Ongoing work in our lab revealed first insight into rancRNA processing and mechanism of this emerging class of translation regulators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As translation is the final step in gene expression it is particularly important to understand the processes involved in translation regulation. It was shown in the last years that a class of RNA, the non-protein-coding RNAs (ncRNAs), is involved in regulation of gene expression via various mechanisms (e.g. gene silencing by microRNAs). Almost all of these ncRNA discovered so far target the mRNA in order to modulate protein biosynthesis, this is rather unexpected considering the crucial role of the ribosome during gene expression. However, recent data from our laboratory showed that there is a new class of ncRNAs, which target the ribosome itself [Gebetsberger et al., 2012/ Pircher et al, 2014]. These so called ribosome-associated ncRNAs (rancRNAs) have an impact on translation regulation, mainly by interfering / modulating the rate of protein biosynthesis. The main goal of this project is to identify and describe novel potential regulatory rancRNAs in H. volcanii with the focus on intergenic candidates. Northern blot analyses already revealed interactions with the ribosome and showed differential expression of rancRNAs during different growth phases or under specific stress conditions. To investigate the biological relevance of these rancRNAs, knock-outs were generated in H. volcanii which were used for phenotypic characterization studies. The rancRNA s194 showed association with the 50S ribosomal subunit in vitro and in vivo and was capable of inhibiting peptide bond formation and seems to inhibit translation in vitro. These preliminary data for the rancRNA s194 make it an interesting candidate for further functional studies to identify the molecular mechanisms by which rancRNAs can modulate protein biosynthesis. Characterization of further rancRNA candidates are also underway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elongation factor-catalyzed GTP hydrolysis is a key reaction during the ribosomal elongation cycle. Recent crystal structures of G proteins, such as elongation factor G (EF-G) bound to the ribosome, as well as many biochemical studies, provide evidence that the direct interaction of translational GTPases (trGTPases) with the sarcin-ricin loop (SRL) of ribosomal RNA (rRNA) is pivotal for hydrolysis. However, the precise mechanism remains elusive and is intensively debated. Based on the close proximity of the phosphate oxygen of A2662 of the SRL to the supposedly catalytic histidine of EF-G (His87), we probed this interaction by an atomic mutagenesis approach. We individually replaced either of the two nonbridging phosphate oxygens at A2662 with a methyl group by the introduction of a methylphosphonate instead of the natural phosphate in fully functional, reconstituted bacterial ribosomes. Our major finding was that only one of the two resulting diastereomers, the SP methylphosphonate, was compatible with efficient GTPase activation on EF-G. The same trend was observed for a second trGTPase, namely EF4 (LepA). In addition, we provide evidence that the negative charge of the A2662 phosphate group must be retained for uncompromised activity in GTP hydrolysis. (1) In summary, our data strongly corroborate that the nonbridging proSP phosphate oxygen at the A2662 of the SRL is critically involved in the activation of GTP hydrolysis. A mechanistic scenario is supported in which positioning of the catalytically active, protonated His87 through electrostatic interactions with the A2662 phosphate group and H-bond networks are key features of ribosome-triggered activation of trGTPases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elongation factor-catalyzed GTP hydrolysis is a key reaction during the ribosomal elongation cycle. Recent crystal structures of G proteins, such as elongation factor G (EF-G) bound to the ribosome, as well as many biochemical studies, provide evidence that the direct interaction of translational GTPases (trGTPases) with the sarcin-ricin loop (SRL) of ribosomal RNA (rRNA) is pivotal for hydrolysis. However, the precise mechanism remains elusive and is intensively debated. Based on the close proximity of the phosphate oxygen of A2662 of the SRL to the supposedly catalytic histidine of EF-G (His87), we probed this interaction by an atomic mutagenesis approach. We individually replaced either of the two nonbridging phosphate oxygens at A2662 with a methyl group by the introduction of a methylphosphonate instead of the natural phosphate in fully functional, reconstituted bacterial ribosomes. Our major finding was that only one of the two resulting diastereomers, the SP methylphosphonate, was compatible with efficient GTPase activation on EF-G. The same trend was observed for a second trGTPase, namely EF4 (LepA). In addition, we provide evidence that the negative charge of the A2662 phosphate group must be retained for uncompromised activity in GTP hydrolysis. (1) In summary, our data strongly corroborate that the nonbridging proSP phosphate oxygen at the A2662 of the SRL is critically involved in the activation of GTP hydrolysis. A mechanistic scenario is supported in which positioning of the catalytically active, protonated His87 through electrostatic interactions with the A2662 phosphate group and H-bond networks are key features of ribosome-triggered activation of trGTPases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antisense oligonucleotides are medical agents for the treatment of genetic diseases that are designed to interact specifically with mRNA. This interaction either induces enzymatic degradation of the targeted RNA or modifies processing pathways, e.g. by inducing alternative splicing of the pre-mRNA. The latter mechanism applies to the treatment of Duchenne muscular dystrophy with a sugar-modified DNA analogue called tricyclo-DNA (tcDNA). In tcDNA the ribose sugar-moiety is extended to a three-membered ring system, which augments the binding affinity and the selectivity of the antisense oligonucleotide for its target. The advent of chemically modified nucleic acids for antisense therapy presents a challenge to diagnostic tools, which must be able to cope with a variety of structural analogues. Mass spectrometry meets this demand for non-enzyme based sequencing methods ideally, because the technique is largely unaffected by structural modifications of the analyte. Sequence coverage of a fully modified tcDNA 15mer can be obtained in a single tandem mass spectrometric experiment. Beyond sequencing experiments, tandem mass spectrometry was applied to elucidate the gas-phase structure and stability of tcDNA:DNA and tcDNA:RNA hybrid duplexes. Most remarkable is the formation of truncated duplexes upon collision-induced dissociation of these structures. Our data suggest that the cleavage site within the duplex is directed by the modified sugar-moiety. Moreover, the formation of truncated duplexes manifests the exceptional stability of the hybrid duplexes in the gas-phase. This stability arises from the modified sugar-moiety, which locks the tcDNA single strand into a conformation that is similar to RNA in A-form duplexes. The conformational particularity of tcDNA in the gas-phase was confirmed by ion mobility-mass spectrometry experiments on tcDNA, DNA, and RNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-amplifying replicon RNA (RepRNA) are large molecules (12-14kb); their self-replication amplifies mRNA template numbers, affording several rounds of antigen production, effectively increasing vaccine antigen payloads. Their sensitivity to RNase-sensitivity and inefficient uptake by dendritic cells (DCs) - absolute requirements for vaccine design - were tackled by condensing RepRNA into synthetic, nanoparticulate, polyethylenimine (PEI)-polyplex delivery vehicles. Polyplex-delivery formulations for small RNA molecules cannot be transferred to RepRNA due to its greater size and complexity; the N:P charge ratio and impact of RepRNA folding would influence polyplex condensation, post-delivery decompaction and the cytosolic release essential for RepRNA translation. Polyplex-formulations proved successful for delivery of RepRNA encoding influenza virus hemagglutinin and nucleocapsid to DCs. Cytosolic translocation was facilitated, leading to RepRNA translation. This efficacy was confirmed in vivo, inducing both humoral and cellular immune responses. Accordingly, this paper describes the first PEI-polyplexes providing efficient delivery of the complex and large, self-amplifying RepRNA vaccines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 3' processing of histone pre-mRNAs is a nuclear event in which the U7 small nuclear ribonucleoprotein (snRNP) participates as an essential trans-acting factor. We have constructed a chimeric histone-U7 RNA that when injected into the cytoplasm of Xenopus laevis oocytes assembles into a snRNP-like particle and becomes cleaved at the correct site(s). RNP assembly is a prerequisite for cleavage, but, since neither the RNA nor the RNP appreciably enter the nucleus, cleavage occurs mostly, if not exclusively, in the cytoplasm. Consistent with this, cleavage also occurs in enucleated oocytes or in oocytes which have been depleted of U7 snRNPs. Thus all necessary components for cleavage must be present in the oocyte cytoplasm. The novel cleavage occurs in cis, involving only a single molecule of chimeric RNA with its associated proteins. This reaction is equally dependent upon base pairing interactions between histone spacer sequences and the 5'-end of the U7 moiety as the natural in trans reaction. These results imply that U7 is the only snRNP required for histone RNA processing. Moreover, the chimeric RNA is expected to be useful for further studies of the cleavage and assembly mechanisms of U7 snRNP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Xenopus oocytes in vitro transcribed mouse U7 RNA is assembled into small nuclear ribonucleoproteins (snRNPs) that are functional in histone RNA 3' processing. If the special Sm binding site of U7 (AAUUUGUCUAG, U7 Sm WT) is converted into the canonical Sm sequence derived from the major snRNAs (AAUUUUUGGAG, U7 Sm OPT) the RNA assembles into a particle which accumulates more efficiently in the nucleus, but which is non-functional. U7 RNA with a heavily mutated Sm binding site (AACGCGUCAUG, U7 Sm MUT) is deficient in nuclear accumulation and function. By UV cross-linking U7 Sm WT RNA can be linked to three proteins, i.e. the common snRNP proteins G and B/B' and an apparently U7-specific protein of 40 kDa. As a result of altering the Sm binding site, U7 Sm OPT RNA cannot be cross-linked to the 40 kDa protein and no cross-links are obtained with U7 Sm MUT RNA. The fact that the Sm site also interacts with at least one U7-specific protein is so far unique to U7 RNA and may provide an explanation for the atypical sequence of this site. All described RNA-protein interactions, including that with the 40 kDa protein, already occur in the cytoplasm. An additional cytoplasmic photoadduct obtained with U7 Sm WT and U7 Sm OPT, but not U7 Sm MUT, RNAs is indicative of a protein of 60-80 kDa. The m7G cap structure of U7 Sm WT and U7 Sm OPT RNA becomes hypermethylated. However, the 3mG cap enhances, but is not required for, nuclear accumulation. Finally, U7 Sm WT RNA is functional in histone RNA processing even when bearing an ApppG cap.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the requirements for efficient histone-specific RNA 3' processing in nuclear extract from mammalian tissue culture cells. Processing is strongly impaired by mutations in the pre-mRNA spacer element that reduce the base-pairing potential with U7 RNA. Moreover, by exchanging the hairpin and spacer elements of two differently processed H4 genes, we find that this difference is exclusively due to the spacer element. Finally, processing is inhibited by the addition of competitor RNAs, if these contain a wild-type spacer sequence, but not if their spacer element is mutated. Conversely, the importance of the hairpin for histone RNA 3' processing is highly variable: A hairpin mutant of the H4-12 gene is processed with almost wild-type efficiency in extract from K21 mouse mastocytoma cells but is strongly affected in HeLa cell extract, whereas an identical hairpin mutant of the H4-1 gene is affected in both extracts. The hairpin defect of H4-12-specific RNA in HeLa cells can be overcome by a compensatory mutation that increases the base complementarity to U7 snRNA. Very similar results were also obtained in RNA competition experiments: processing of H4-12-specific RNA can be competed by RNA carrying a wild-type hairpin element in extract from HeLa, but not K21 cells, whereas processing of H4-1-specific RNA can be competed in both extracts. With two additional histone genes we obtained results that were in one case intermediate and in the other similar to those obtained with H4-1. These results suggest that hairpin binding factor(s) can cooperatively support the ability of U7 snRNPs to form an active processing complex, but is(are) not directly involved in the processing mechanism.