923 resultados para ZnO nanobelts
Resumo:
ZnO single nanowire photodetectors have been measured in different ambient conditions in order to understand and control adsorption processes on the surface. A decrease in the conductivity has been observed as a function of time when the nanowires are exposed to air, due to adsorbed O2/H2O species at the nanowire surface. In order to have a device with stable characteristics in time, thermal desorption has been used to recover the original conductivity followed by PMMA coating of the exposed nanowire surface.
Resumo:
The parameters that control the stability of ZnO-nanoparticles suspensions and their deposition by electrophoretic deposition were studied, so as to organize the assembly and compaction of nanoparticles. The addition of cationic polyelectrolyte - Polyethylenimine (PEI) - with different molecular weights was investigated, in order to study their effectiveness and the influence of the molecular weight of the organic chain on suspensions dispersion. It was found that PEI with the highest molecular weight provided better dispersion conditions. Cathodic EPD was performed under previously optimized suspensions conditions and over electropolished stainless steel substrates. Experimental results showed that the EPD process in these conditions allows obtaining dense transparent ZnO thin films. Deposition times and intensities were optimized by analyzing the resulting thin films characteristics. Finally, the deposits were characterized by FE-SEM, AFM, and different spectroscopic techniques.
Resumo:
Recientes publicaciones han mostrado propiedades fotocatalíticas interesantes en sistemas basados en TiO2 y ZnO. En unos casos hay presentes fases de ambos óxidos binarios en íntimo contacto [1] y en otros se tienen óxidos mixtos (titanatos de Zn) de distintas estequiometrías [2]; estos últimos, además, se han podido dopar con nitrógeno para obtener actividad con luz visible [3]. Las características electrónicas relevantes de estos sistemas (posición relativa de los niveles de ambas fases en el primero, estructura de bandas para los titanatos con o sin N) se conocen muy poco. Aquí se realiza un estudio teórico cuántico de estos materiales, usando para mayor exactitud funcionales híbridos (pues es sabido que la DFT estándar predice mal los bandgaps). Además se tienen en cuenta desarrollos teóricos recientes que permiten determinar ab initio, para semiconductores de gap alto, el coeficiente más adecuado de mezcla de intercambio HF [4, 5], y formular reglas para obtener con más exactitud el alineamiento de bandas que se establece a través de una interfaz [5, 6].
Resumo:
ZnO nanofibre networks (NFNs) were grown by vapour transport method on Si-based substrates. One type of substrate was SiO2 thermally grown on Si and another consisted of a Si wafer onto which Si nanowires (NWs) had been grown having Au nanoparticles catalysts. The ZnO-NFN morphology was observed by scanning electron microscopy on samples grown at 600 °C and 720 °C substrate temperature, while an focused ion beam was used to study the ZnO NFN/Si NWs/Si and ZnO NFN/SiO2 interfaces. Photoluminescence, electrical conductance and photoconductance of ZnO-NFN was studied for the sample grown on SiO2. The photoluminescence spectra show strong peaks due to exciton recombination and lattice defects. The ZnO-NFN presents quasi-persistent photoconductivity effects and ohmic I-V characteristics which become nonlinear and hysteretic as the applied voltage is increased. The electrical conductance as a function of temperature can be described by a modified three dimensional variable hopping model with nanometer-ranged typical hopping distances.
Resumo:
A simple and scalable chemical approach has been proposed for the generation of 1-dimensional nanostructures of two most important inorganic materials such as zinc oxide and cadmium sulfide. By controlling the growth habit of the nanostructures with manipulated reaction conditions, the diameter and uniformity of the nanowires/nanorods were tailored. We studied extensively optical behavior and structural growth of CdS NWs and ZnO NRs doped ferroelectric liquid crystal Felix-017/100. Due to doping band gap has been changed and several blue shifts occurred in photoluminescence spectra because of nanoconfinement effect and mobility of charges.
Resumo:
The present study assessed the uptake and toxicity of ZnO nanoparticles (NPs), ZnO bulk, and ZnCl2 salt in earthworms in spiked agricultural soils. In addition, the toxicity of aqueous extracts to Daphnia magna and Chlorella vulgaris was analyzed to determine the risk of these soils to the aquatic compartment. We then investigated the distribution of Zn in soil fractions to interpret the nature of toxicity. Neither mortality nor differences in earthworm body weight were observed compared with the control. The most sensitive end point was reproduction. ZnCl2 was notably toxic in eliminating the production of cocoons. The effects induced by ZnO-NPs and bulk ZnO on fecundity were similar and lower than those of the salt. In contrast to ZnO bulk, ZnO-NPs adversely affected fertility. The internal concentrations of Zn in earthworms in the NP group were greater than those in the salt and bulk groups, although bioconcentration factors were consistently <1. No relationship was found between toxicity and internal Zn amounts in earthworms. The results from the sequential extraction of soil showed that ZnCl2 displayed the highest availability compared with both ZnO. Zn distribution was consistent with the greatest toxicity showed by the salt but not with Zn body concentrations. The soil extracts from both ZnO-NPs and bulk ZnO did not show effects on aquatic organisms (Daphnia and algae) after short-term exposure. However, ZnCl2 extracts (total and 0.45-μm filtered) were toxic to Daphnia.
Resumo:
High intrinsic carrier concentration (n-type) • Efforts to reduce this effect: • Homoepitaxy1 • Non-polar orientations • Similar samples exhibit residual doping as low as ~1014 cm-3 (2) The path to p-type doping • Many dopants proposed • N is a promising candidate • Simple NO is a deep level • Complex levels have shallower energies • N-related levels observed near the VB by many groups • Energies between 130 meV and 160 meV from VBM
Resumo:
A produção de energia é um dos grandes desafios deste século, principalmente com a necessidade no desenvolvimento de processos que utilizem preferencialmente fontes renováveis. Nesse contexto, é claro o interesse por pesquisas baseada no hidrogênio. Porém, os ganhos ambientais efetivos estão associados também à matéria-prima usada no processo de geração do hidrogênio, senso assim mais significativo quando do uso de fontes renováveis. No presente trabalho foi estudado o efeito da adição de diferentes teores de CeO2 em catalisadores de NiZnO, preparados pelo método da co-precipitação. Os catalisadores foram estudados frente à reação de reforma a vapor do etanol (RVE) para produção de H2, e no decorrer do trabalho foi pertinente incluir o estudo da reforma a vapor da acetona (RVA), como complemento dos estudos da RVE. Além disso, esta é uma molécula modelo para reforma a vapor do bio-óleo. Nos sistemas catalíticos sintetizados houve a formação da liga NiZn3, o que aparenta proporcionar um efeito sinérgico entre esses elementos. Observou-se um efeito altamente promotor do CeO2 com relação a diminuição do coque formado, devido a uma menor da formação da acetona, durante as etapas de reforma do etanol. O que consequentemente interferiu na produção de H2. O catalisador contendo 20% de CeO2 denominado NiZn20Ce apresentou um desempenho altamente promissor, pois de acordo com as análises de DRIFT, a presença do CeO2 levou a formação de espécies de formiato, o que consequentemente interferiu em uma menor formação de coque e maior produção de H2. Foi comprovado também que a natureza dos depósitos carbonáceos depende tanto do substrato utilizado quanto das etapas precursoras inicias que levarão a formação desse coque, sendo o ponto chave para um melhor desempenho do catalisador.
Resumo:
In this study, we examine the performance of Cu2O and Cu2O/ZnO surfaces in a filter-press electrochemical cell for the continuous electroreduction of CO2 into methanol. The electrodes are prepared by airbrushing the metal particles onto a porous carbon paper and then are electrochemically characterized by cyclic voltammetry analyses. Particular emphasis is placed on evaluating and comparing the methanol production and Faradaic efficiencies at different loadings of Cu2O particles (0.5, 1 and 1.8 mg cm−2), Cu2O/ZnO weight ratios (1:0.5, 1:1 and 1:2) and electrolyte flow rates (1, 2 and 3 ml min−1 cm−2). The electrodes including ZnO in their catalytic surface were stable after 5 h, in contrast with Cu2O-deposited carbon papers that present strong deactivation with time. The maximum methanol formation rate and Faradaic efficiency for Cu2O/ZnO (1:1)-based electrodes, at an applied potential of −1.3 V vs. Ag/AgCl, were r = 3.17 × 10−5 mol m−2 s−1 and FE = 17.7 %, respectively. Consequently, the use of Cu2O–ZnO mixtures may be of application for the continuous electrochemical formation of methanol, although further research is still required in order to develop highly active, selective and stable catalysts the electroreduction of CO2 to methanol.
Resumo:
Experimental studies on phase equilibria in the multi-component system PbO-ZnO-CaO-SiO2-FeO-Fe2O3 in air have been conducted to characterize the phase relations of a complex slag system used in the oxidation smelting of lead and in typical lead blast furnace sinters. The liquidus in two pseudoternary sections ZnO-Fe2O3-(PbO + CaO + SiO2) with the CaO/SiO2 weight ratio of 0.1 and the PbO/(CaO + SiO2) weight ratio of 6.2, and with CaO/SiO2 weight ratio of 0.6 and the PbO/(CaO + SiO2) weight ratio of 4.3, have been constructed.
Resumo:
The phase equilibria in the Fe-Zn-O system in the range 900-1580degreesC in air have been experimentally studied using equilibration and quenching techniques. The compositions of the phases at equilibrium were determined using electron probe X-ray microanalysis (EPMA). The ferrous and ferric bulk iron concentrations were measured with a wet chemical analysis using the ammonium metavanadate technique. X-ray powder diffraction analysis (XRD) was used to characterise the phases. Iron oxide dissolved in zincite was found to be present principally in the ferric form. The XRD analysis and the composition measurements both indicate that zincite is the only phase stable in the ZnO-rich area in the range of conditions investigated. The solubility of the iron oxide in zincite rapidly increases at temperatures above 1200degreesC; the morphology of the zincite crystals also sharply changes between 1200 and 1300degreesC from rounded to plate-like crystals. The plate-like zincite forms a refractory network-the type of microstructure beneficial to the Imperial Smelting Process (ISP) sinter performance. The software program FactSage with a thermodynamically optimised database was used to predict phase equilibria in the Fe-Zn-O system.
Resumo:
The phase equilibria and liquidus temperatures in the binary SiO2-ZnO system and in the ternary Al2O3-SiO2-ZnO system at low Al2O3 concentrations have been experimentally determined using the equilibration and quenching technique followed by electron probe X-ray microanalysis. In the SiO2-ZnO system, two binary eutectics involving the congruently melting willemite (Zn2SiO4) were found at 1448 +/- 5 degrees C and 0.52 +/- 0.01 mole fraction ZnO and at 1502 +/- 5 degrees C and 0.71 +/- 0.01 mole fraction ZnO, respectively. The two ternary eutectics involving willemite previously reported in the Al2O3SiO2-ZnO system were found to be at 1315 +/- 5 degrees C and 1425 +/- 25 T, respectively. The compositions of the eutectics are 0.07, 0.52, and 0.41 and 0.05, 0.28, and 0.67 mole fraction Al2O3, SiO2, and ZnO, respectively. The results of the present investigation are significantly different from the results of previous studies.
Resumo:
Zinc oxide single crystals implanted at room temperature with high-dose (1.4x10(17) cm(-2)) 300 keV As+ ions are annealed at 1000-1200 degrees C. Damage recovery is studied by a combination of Rutherford backscattering/channeling spectrometry (RBS/C), cross-sectional transmission electron microscopy (XTEM), and atomic force microscopy. Results show that such a thermal treatment leads to the decomposition and evaporation of the heavily damaged layer instead of apparent defect recovery and recrystallization that could be inferred from RBS/C and XTEM data alone. This study shows that heavily damaged ZnO has relatively poor thermal stability compared to as-grown ZnO which is a significant result and has implications for understanding results on thermal annealing of ion-implanted ZnO. (c) 2005 Americian Institute of Physics.
Resumo:
N-doped ZnO/g-C3N4 hybrid core–shell nanoplates have been successfully prepared via a facile, cost-effective and eco-friendly ultrasonic dispersion method for the first time. HRTEM studies confirm the formation of the N-doped ZnO/g-C3N4 hybrid core–shell nanoplates with an average diameter of 50 nm and the g-C3N4 shell thickness can be tuned by varying the content of loaded g-C3N4. The direct contact of the N-doped ZnO surface and g-C3N4 shell without any adhesive interlayer introduced a new carbon energy level in the N-doped ZnO band gap and thereby effectively lowered the band gap energy. Consequently, the as-prepared hybrid core–shell nanoplates showed a greatly enhanced visible-light photocatalysis for the degradation of Rhodamine B compare to that of pure N-doped ZnO surface and g-C3N4. Based on the experimental results, a proposed mechanism for the N-doped ZnO/g-C3N4 photocatalyst was discussed. Interestingly, the hybrid core–shell nanoplates possess high photostability. The improved photocatalytic performance is due to a synergistic effect at the interface of the N-doped ZnO and g-C3N4 including large surface-exposure area, energy band structure and enhanced charge-separation properties. Significantly, the enhanced performance also demonstrates the importance of evaluating new core–shell composite photocatalysts with g-C3N4 as shell material.