917 resultados para Wavelet Packet Decomposition
Resumo:
In finance literature many economic theories and models have been proposed to explain and estimate the relationship between risk and return. Assuming risk averseness and rational behavior on part of the investor, the models are developed which are supposed to help in forming efficient portfolios that either maximize (minimize) the expected rate of return (risk) for a given level of risk (rates of return). One of the most used models to form these efficient portfolios is the Sharpe's Capital Asset Pricing Model (CAPM). In the development of this model it is assumed that the investors have homogeneous expectations about the future probability distribution of the rates of return. That is, every investor assumes the same values of the parameters of the probability distribution. Likewise financial volatility homogeneity is commonly assumed, where volatility is taken as investment risk which is usually measured by the variance of the rates of return. Typically the square root of the variance is used to define financial volatility, furthermore it is also often assumed that the data generating process is made of independent and identically distributed random variables. This again implies that financial volatility is measured from homogeneous time series with stationary parameters. In this dissertation, we investigate the assumptions of homogeneity of market agents and provide evidence for the case of heterogeneity in market participants' information, objectives, and expectations about the parameters of the probability distribution of prices as given by the differences in the empirical distributions corresponding to different time scales, which in this study are associated with different classes of investors, as well as demonstrate that statistical properties of the underlying data generating processes including the volatility in the rates of return are quite heterogeneous. In other words, we provide empirical evidence against the traditional views about homogeneity using non-parametric wavelet analysis on trading data, The results show heterogeneity of financial volatility at different time scales, and time-scale is one of the most important aspects in which trading behavior differs. In fact we conclude that heterogeneity as posited by the Heterogeneous Markets Hypothesis is the norm and not the exception.
Resumo:
The manner in which remains decompose has been and is currently being researched around the world, yet little is still known about the generated scent of death. In fact, it was not until the Casey Anthony trial that research on the odor released from decomposing remains, and the compounds that it is comprised of, was brought to light. The Anthony trial marked the first admission of human decomposition odor as forensic evidence into the court of law; however, it was not "ready for prime time" as the scientific research on the scent of death is still in its infancy. This research employed the use of solid-phase microextraction (SPME) with gas chromatography-mass spectrometry (GC-MS) to identify the volatile organic compounds (VOCs) released from decomposing remains and to assess the impact that different environmental conditions had on the scent of death. Using human cadaver analogues, it was discovered that the environment in which the remains were exposed to dramatically affected the odors released by either modifying the compounds that it was comprised of or by enhancing/hindering the amount that was liberated. In addition, the VOCs released during the different stages of the decomposition process for both human remains and analogues were evaluated. Statistical analysis showed correlations between the stage of decay and the VOCs generated, such that each phase of decomposition was distinguishable based upon the type and abundance of compounds that comprised the odor. This study has provided new insight into the scent of death and the factors that can dramatically affect it, specifically, frozen, aquatic, and soil environments. Moreover, the results revealed that different stages of decomposition were distinguishable based upon the type and total mass of each compound present. Thus, based upon these findings, it is suggested that the training aids that are employed for human remains detection (HRD) canines should 1) be characteristic of remains that have undergone decomposition in different environmental settings, and 2) represent each stage of decay, to ensure that the HRD canines have been trained to the various odors that they are likely to encounter in an operational situation.
Resumo:
Dimethyl methyl phosphonate (DMMP), diethyl methyl phosphonate (DEMP), and fluorophenols undergo rapid decomposition upon TiO2 catalyzed photooxidation in air saturated aqueous solution. The degradation rates of DMMP were determined over a range of temperatures, under solar and artificial irradiation with and without simultaneous sonication. Solar illumination is effective for the degradation and the use of low energy of sonication increases the rate of mineralization. The surface area and the type of TiO2 dramatically affect the photoactivity of the catalyst. A number of intermediate products are formed and ultimately oxidized to phosphate and carbon dioxide. Possible reaction mechanisms and pathways for DMMP and DEMP are proposed. The Langmuir- Hinshelwood kinetic parameters for the photocatalysis of fluorophenols suggest modestly different reactivity for each isomer. The adsorption constant is largest for the ortho isomer consistent with the adsorption onto TiO2 through both hydroxyl and fluoride groups to form a chelated type structure.
Resumo:
Communication has become an essential function in our civilization. With the increasing demand for communication channels, it is now necessary to find ways to optimize the use of their bandwidth. One way to achieve this is by transforming the information before it is transmitted. This transformation can be performed by several techniques. One of the newest of these techniques is the use of wavelets. Wavelet transformation refers to the act of breaking down a signal into components called details and trends by using small waveforms that have a zero average in the time domain. After this transformation the data can be compressed by discarding the details, transmitting the trends. In the receiving end, the trends are used to reconstruct the image. In this work, the wavelet used for the transformation of an image will be selected from a library of available bases. The accuracy of the reconstruction, after the details are discarded, is dependent on the wavelets chosen from the wavelet basis library. The system developed in this thesis takes a 2-D image and decomposes it using a wavelet bank. A digital signal processor is used to achieve near real-time performance in this transformation task. A contribution of this thesis project is the development of DSP-based test bed for the future development of new real-time wavelet transformation algorithms.
Resumo:
About 10% of faults involving the electrical system occurs in power transformers. Therefore, the protection applied to the power transformers is essential to ensure the continuous operation of this device and the efficiency of the electrical system. Among the protection functions applied to power transformers, the differential protection appears as one of the main schemes, presenting reliable discrimination between internal faults and external faults or inrush currents. However, when using the low frequency components of the differential currents flowing through the transformer, the main difficulty of the conventional methods of differential protection is the delay for detection of the events. However, internal faults, external faults and other disturbances related to the transformer operation present transient and can be appropriately detected by the wavelet transform. In this paper is proposed the development of a wavelet-based differential protection for detection and identification of external faults to the transformer, internal faults, and transformer energizing by using the wavelet coefficient energy of the differential currents. The obtained results reveal the advantages of using of the wavelet transform in the differential protection compared to conventional protection, since it provides reliability and speed in detection of these events.
Resumo:
Analogous to sunspots and solar photospheric faculae, which visibility is modulated by stellar rotation, stellar active regions consist of cool spots and bright faculae caused by the magnetic field of the star. Such starspots are now well established as major tracers used to estimate the stellar rotation period, but their dynamic behavior may also be used to analyze other relevant phenomena such as the presence of magnetic activity and its cycles. To calculate the stellar rotation period, identify the presence of active regions and investigate if the star exhibits or not differential rotation, we apply two methods: a wavelet analysis and a spot model. The wavelet procedure is also applied here to study pulsation in order to identify specific signatures of this particular stellar variability for different types of pulsating variable stars. The wavelet transform has been used as a powerful tool for treating several problems in astrophysics. In this work, we show that the time-frequency analysis of stellar light curves using the wavelet transform is a practical tool for identifying rotation, magnetic activity, and pulsation signatures. We present the wavelet spectral composition and multiscale variations of the time series for four classes of stars: targets dominated by magnetic activity, stars with transiting planets, those with binary transits, and pulsating stars. We applied the Morlet wavelet (6th order), which offers high time and frequency resolution. By applying the wavelet transform to the signal, we obtain the wavelet local and global power spectra. The first is interpreted as energy distribution of the signal in time-frequency space, and the second is obtained by time integration of the local map. Since the wavelet transform is a useful mathematical tool for nonstationary signals, this technique applied to Kepler and CoRoT light curves allows us to clearly identify particular signatures for different phenomena. In particular, patterns were identified for the temporal evolution of the rotation period and other periodicity due to active regions affecting these light curves. In addition, a beat-pattern vii signature in the local wavelet map of pulsating stars over the entire time span was also detected. The second method is based on starspots detection during transits of an extrasolar planet orbiting its host star. As a planet eclipses its parent star, we can detect physical phenomena on the surface of the star. If a dark spot on the disk of the star is partially or totally eclipsed, the integrated stellar luminosity will increase slightly. By analyzing the transit light curve it is possible to infer the physical properties of starspots, such as size, intensity, position and temperature. By detecting the same spot on consecutive transits, it is possible to obtain additional information such as the stellar rotation period in the planetary transit latitude, differential rotation, and magnetic activity cycles. Transit observations of CoRoT-18 and Kepler-17 were used to implement this model.
Resumo:
The goal of the power monitoring in electrical power systems is to promote the reliablility as well as the quality of electrical power.Therefore, this dissertation proposes a new theory of power based on wavelet transform for real-time estimation of RMS voltages and currents, and some power amounts, such as active power, reactive power, apparent power, and power factor. The appropriate estimation the of RMS and power values is important for many applications, such as: design and analysis of power systems, compensation devices for improving power quality, and instruments for energy measuring. Simulation and experimental results obtained through the proposed MaximalOverlap Discrete Wavelet Transform-based method were compared with the IEEE Standard 1459-2010 and the commercial oscilloscope, respectively, presenting equivalent results. The proposed method presented good performance for compact mother wavelet, which is in accordance with real-time applications.
Resumo:
A typical electrical power system is characterized by centr alization of power gene- ration. However, with the restructuring of the electric sys tem, this topology is changing with the insertion of generators in parallel with the distri bution system (distributed gene- ration) that provides several benefits to be located near to e nergy consumers. Therefore, the integration of distributed generators, especially fro m renewable sources in the Brazi- lian system has been common every year. However, this new sys tem topology may result in new challenges in the field of the power system control, ope ration, and protection. One of the main problems related to the distributed generati on is the islanding formation, witch can result in safety risk to the people and to the power g rid. Among the several islanding protection techniques, passive techniques have low implementation cost and simplicity, requiring only voltage and current measuremen ts to detect system problems. This paper proposes a protection system based on the wavelet transform with overcur- rent and under/overvoltage functions as well as infomation of fault-induced transients in order to provide a fast detection and identification of fault s in the system. The propo- sed protection scheme was evaluated through simulation and experimental studies, with performance similar to the overcurrent and under/overvolt age conventional methods, but with the additional detection of the exact moment of the fault.
Resumo:
The great interest in nonlinear system identification is mainly due to the fact that a large amount of real systems are complex and need to have their nonlinearities considered so that their models can be successfully used in applications of control, prediction, inference, among others. This work evaluates the application of Fuzzy Wavelet Neural Networks (FWNN) to identify nonlinear dynamical systems subjected to noise and outliers. Generally, these elements cause negative effects on the identification procedure, resulting in erroneous interpretations regarding the dynamical behavior of the system. The FWNN combines in a single structure the ability to deal with uncertainties of fuzzy logic, the multiresolution characteristics of wavelet theory and learning and generalization abilities of the artificial neural networks. Usually, the learning procedure of these neural networks is realized by a gradient based method, which uses the mean squared error as its cost function. This work proposes the replacement of this traditional function by an Information Theoretic Learning similarity measure, called correntropy. With the use of this similarity measure, higher order statistics can be considered during the FWNN training process. For this reason, this measure is more suitable for non-Gaussian error distributions and makes the training less sensitive to the presence of outliers. In order to evaluate this replacement, FWNN models are obtained in two identification case studies: a real nonlinear system, consisting of a multisection tank, and a simulated system based on a model of the human knee joint. The results demonstrate that the application of correntropy as the error backpropagation algorithm cost function makes the identification procedure using FWNN models more robust to outliers. However, this is only achieved if the gaussian kernel width of correntropy is properly adjusted.
Resumo:
Discovered in 1963, 3C 273 was the second quasar identified and cataloged in the Third Cambridge Catalog for radio sources, and the first one for which emission lines were identified with a hydrogen sequence redshifted. It is the brightest quasar of the celestial sphere, the most studied, analyzed, and with a resulting abundance of data available in a vast literature. The accurate analysis of the deviations of the spectral lines of quasars provides enough information to put in evidence the variation of fundamental constants of nature and similarly the universe expansion rate. The analysis of the variability of the light curves of these bodies, and the consequent accuracy of their periodicity, is of utmost importance as it provides an efficiency of their observations, enables a greater understanding of the physical phenomena, and makes it possible to conduct spectral observations on more accurate dates (when their light curves show pronounced peaks and therefore richer spectra information). In this master’s thesis twenty eight light curves from the quasar 3C 273 are studied, covering all the electromagnetic spectrum wavebands (radio emission to gamma rays), totaling in the analysis of four light curves for each waveband. We have applied the method of Continuous Wavelet Transform using the sixth-order (!0 = 6) Morlet wavelet function, and obtained excellent results in accordance with the literature.
Resumo:
Discovered in 1963, 3C 273 was the second quasar identified and cataloged in the Third Cambridge Catalog for radio sources, and the first one for which emission lines were identified with a hydrogen sequence redshifted. It is the brightest quasar of the celestial sphere, the most studied, analyzed, and with a resulting abundance of data available in a vast literature. The accurate analysis of the deviations of the spectral lines of quasars provides enough information to put in evidence the variation of fundamental constants of nature and similarly the universe expansion rate. The analysis of the variability of the light curves of these bodies, and the consequent accuracy of their periodicity, is of utmost importance as it provides an efficiency of their observations, enables a greater understanding of the physical phenomena, and makes it possible to conduct spectral observations on more accurate dates (when their light curves show pronounced peaks and therefore richer spectra information). In this master’s thesis twenty eight light curves from the quasar 3C 273 are studied, covering all the electromagnetic spectrum wavebands (radio emission to gamma rays), totaling in the analysis of four light curves for each waveband. We have applied the method of Continuous Wavelet Transform using the sixth-order (!0 = 6) Morlet wavelet function, and obtained excellent results in accordance with the literature.
Resumo:
Binary systems are key environments to study the fundamental properties of stars. In this work, we analyze 99 binary systems identified by the CoRoT space mission. From the study of the phase diagrams of these systems, our sample is divided into three groups: those whose systems are characterized by the variability relative to the binary eclipses; those presenting strong modulations probably due to the presence of stellar spots on the surface of star; and those whose systems have variability associated with the expansion and contraction of the surface layers. For eclipsing binary stars, phase diagrams are used to estimate the classification in regard to their morphology, based on the study of equipotential surfaces. In this context, to determine the rotation period, and to identify the presence of active regions, and to investigate if the star exhibits or not differential rotation and study stellar pulsation, we apply the wavelet procedure. The wavelet transform has been used as a powerful tool in the treatment of a large number of problems in astrophysics. Through the wavelet transform, one can perform an analysis in time-frequency light curves rich in details that contribute significantly to the study of phenomena associated with the rotation, the magnetic activity and stellar pulsations. In this work, we apply Morlet wavelet (6th order), which offers high time and frequency resolution and obtain local (energy distribution of the signal) and global (time integration of local map) wavelet power spectra. Using the wavelet analysis, we identify thirteen systems with periodicities related to the rotational modulation, besides the beating pattern signature in the local wavelet map of five pulsating stars over the entire time span.
Resumo:
Binary systems are key environments to study the fundamental properties of stars. In this work, we analyze 99 binary systems identified by the CoRoT space mission. From the study of the phase diagrams of these systems, our sample is divided into three groups: those whose systems are characterized by the variability relative to the binary eclipses; those presenting strong modulations probably due to the presence of stellar spots on the surface of star; and those whose systems have variability associated with the expansion and contraction of the surface layers. For eclipsing binary stars, phase diagrams are used to estimate the classification in regard to their morphology, based on the study of equipotential surfaces. In this context, to determine the rotation period, and to identify the presence of active regions, and to investigate if the star exhibits or not differential rotation and study stellar pulsation, we apply the wavelet procedure. The wavelet transform has been used as a powerful tool in the treatment of a large number of problems in astrophysics. Through the wavelet transform, one can perform an analysis in time-frequency light curves rich in details that contribute significantly to the study of phenomena associated with the rotation, the magnetic activity and stellar pulsations. In this work, we apply Morlet wavelet (6th order), which offers high time and frequency resolution and obtain local (energy distribution of the signal) and global (time integration of local map) wavelet power spectra. Using the wavelet analysis, we identify thirteen systems with periodicities related to the rotational modulation, besides the beating pattern signature in the local wavelet map of five pulsating stars over the entire time span.
Resumo:
Trace gases are important to our environment even though their presence comes only by ‘traces’, but their concentrations must be monitored, so any necessary interventions can be done at the right time. There are some lower and upper boundaries which produce nice conditions for our lives and then monitoring trace gases comes as an essential task nowadays to be accomplished by many techniques. One of them is the differential optical absorption spectroscopy (DOAS), which consists mathematically on a regression - the classical method uses least-squares - to retrieve the trace gases concentrations. In order to achieve better results, many works have tried out different techniques instead of the classical approach. Some have tried to preprocess the signals to be analyzed by a denoising procedure - e.g. discrete wavelet transform (DWT). This work presents a semi-empirical study to find out the most suitable DWT family to be used in this denoising. The search seeks among many well-known families the one to better remove the noise, keeping the original signal’s main features, then by decreasing the noise, the residual left after the regression is done decreases too. The analysis take account the wavelet decomposition level, the threshold to be applied on the detail coefficients and how to apply them - hard or soft thresholding. The signals used come from an open and online data base which contains characteristic signals from some trace gases usually studied.
Resumo:
Trace gases are important to our environment even though their presence comes only by ‘traces’, but their concentrations must be monitored, so any necessary interventions can be done at the right time. There are some lower and upper boundaries which produce nice conditions for our lives and then monitoring trace gases comes as an essential task nowadays to be accomplished by many techniques. One of them is the differential optical absorption spectroscopy (DOAS), which consists mathematically on a regression - the classical method uses least-squares - to retrieve the trace gases concentrations. In order to achieve better results, many works have tried out different techniques instead of the classical approach. Some have tried to preprocess the signals to be analyzed by a denoising procedure - e.g. discrete wavelet transform (DWT). This work presents a semi-empirical study to find out the most suitable DWT family to be used in this denoising. The search seeks among many well-known families the one to better remove the noise, keeping the original signal’s main features, then by decreasing the noise, the residual left after the regression is done decreases too. The analysis take account the wavelet decomposition level, the threshold to be applied on the detail coefficients and how to apply them - hard or soft thresholding. The signals used come from an open and online data base which contains characteristic signals from some trace gases usually studied.