923 resultados para Visual motor integration
Resumo:
The Rapid Visual Information Processing (RVIP) task, a serial discrimination task where task performance believed to reflect sustained attention capabilities, is widely used in behavioural research and increasingly in neuroimaging studies. To date, functional neuroimaging research into the RVIP has been undertaken using block analyses, reflecting the sustained processing involved in the task, but not necessarily the transient processes associated with individual trial performance. Furthermore, this research has been limited to young cohorts. This study assessed the behavioural and functional magnetic resonance imaging (fMRI) outcomes of the RVIP task using both block and event-related analyses in a healthy middle aged cohort (mean age = 53.56 years, n = 16). The results show that the version of the RVIP used here is sensitive to changes in attentional demand processes with participants achieving a 43% accuracy hit rate in the experimental task compared with 96% accuracy in the control task. As shown by previous research, the block analysis revealed an increase in activation in a network of frontal, parietal, occipital and cerebellar regions. The event related analysis showed a similar network of activation, seemingly omitting regions involved in the processing of the task (as shown in the block analysis), such as occipital areas and the thalamus, providing an indication of a network of regions involved in correct trial performance. Frontal (superior and inferior frontal gryi), parietal (precuenus, inferior parietal lobe) and cerebellar regions were shown to be active in both the block and event-related analyses, suggesting their importance in sustained attention/vigilance. These networks and the differences between them are discussed in detail, as well as implications for future research in middle aged cohorts.
Resumo:
Current source inverter (CSI) is an attractive solution in high-power drives. The conventional gate turn-off thyristor (GTO) based CSI-fed induction motor drives suffer from drawbacks such as low-frequency torque pulsation, harmonic heating, and unstable operation at low-speed ranges. These drawbacks can be overcome by connecting a current-controlled voltage source inverter (VSI) across the motor terminal replacing the bulky ac capacitors. The VSI provides the harmonic currents, which results in sinusoidal motor voltage and current even with the CSI switching at fundamental frequency. This paper proposes a CSI-fed induction motor drive scheme where GTOs are replaced by thyristors in the CSI without any external circuit to assist the turning off of the thyristors. Here, the current-controlled VSI, connected in shunt, is designed to supply the volt ampere reactive requirement of the induction motor, and the CSI is made to operate in leading power factor mode such that the thyristors in the CSI are autosequentially turned off. The resulting drive will be able to feed medium-voltage, high-power induction motors directly. A sensorless vector-controlled CSI drive based on the proposed configuration is developed. The experimental results from a 5 hp prototype are presented. Experimental results show that the proposed drive has stable operation throughout the operating range of speeds.
Resumo:
It could be argued that advancing practice in critical care has been superseded by the advanced practice agenda. Some would suggest that advancing practice is focused on the core attributes of an individuals practice progressing onto advanced practice status. However, advancing practice is more of a process than identifiable skills and as such is often negated when viewing the development of practitioners to the advanced practice level. For example practice development initiatives can be seen as advancing practice for the masses which ensures that practitioners are following the same level of practice. The question here is; are they developing individually.
Resumo:
Developing accurate and reliable crop detection algorithms is an important step for harvesting automation in horticulture. This paper presents a novel approach to visual detection of highly-occluded fruits. We use a conditional random field (CRF) on multi-spectral image data (colour and Near-Infrared Reflectance, NIR) to model two classes: crop and background. To describe these two classes, we explore a range of visual-texture features including local binary pattern, histogram of oriented gradients, and learn auto-encoder features. The pro-posed methods are evaluated using hand-labelled images from a dataset captured on a commercial capsicum farm. Experimental results are presented, and performance is evaluated in terms of the Area Under the Curve (AUC) of the precision-recall curves.Our current results achieve a maximum performance of 0.81AUC when combining all of the texture features in conjunction with colour information.
Resumo:
This paper develops a seven-level inverter structure for open-end winding induction motor drives. The inverter supply is realized by cascading four two-level and two three-level neutral-point-clamped inverters. The inverter control is designed in such a way that the common-mode voltage (CMV) is eliminated. DC-link capacitor voltage balancing is also achieved by using only the switching-state redundancies. The proposed power circuit structure is modular and therefore suitable for fault-tolerant applications. By appropriately isolating some of the inverters, the drive can be operated during fault conditions in a five-level or a three-level inverter mode, with preserved CMV elimination and DC-link capacitor voltage balancing, within a reduced modulation range.
Resumo:
This paper describes a method of adjusting the stator power factor angle for the control of an induction motor fed from a current source inverter (CSI) based on the concept of space vectors (or park vectors). It is shown that under steady state, if the torque angle is kept constant over the entire operating range, it has the advantage of keeping the slip frequency constant. This can be utilized to dispose of the speed feedback and simplify the control scheme for the drive, such that the stator voltage integral zero crossings alone can be used as a feedback for deciding the triggering instants of the CSI thyristors under stable operation of the system. A closed-loop control strategy is developed for the drive based on this principle, using a microprocessor-based control system and is implemented on a laboratory prototype CSI fed induction motor drive.
Resumo:
Purpose: Presence of neurophysiological abnormalities in dyslexia has been a conflicting issue. This study was performed to evaluate the role of sensory visual deficits in the pathogenesis of dyslexia. Methods: Pattern visual evoked potentials (PVEP) were recorded in 72 children including 36 children with dyslexia and 36 children without dyslexia (controls) who were matched for age, sex and intelligence. Two check sizes of 15 and 60 min of arc were used with temporal frequencies of 1.5 Hz for transient and 6 Hz for steady‑state methods. Results: Mean latency and amplitude values for 15 min arc and 60 min arc check sizes using steady state and transient methods showed no significant difference between the two study groups (P values: 0.139/0.481/0.356/0.062).Furthermore, no significant difference was observed between two methods of PVEPs in dyslexic and normal children using 60min arc with high contrast(Pvalues: 0.116, 0.402, 0.343 and 0.106). Conclusion: The sensitivity of PVEP has high validity to detect visual deficits in children with dyslexic problem. However, no significant difference was found between dyslexia and normal children using high contrast stimuli.
Resumo:
Using the promeasure technique, we give an alternative evaluation of a path integral corresponding to a quadratic action with a generalized memory.
Resumo:
This paper proposes a multilevel inverter which produces hexagonal voltage space vector structure in lower modulation region and a 12-sided polygonal space vector structure in the over-modulation region. Normal conventional multilevel inverter produces 6n +/- 1 (n=odd) harmonics in the phase voltage during over-modulation and in the extreme square wave mode operation. However, this inverter produces a 12-sided polygonal space vector location leading to the elimination of 6n 1 (n=odd) harmonics in over-modulation region extending to a final 12-step mode operation. The inverter consists of three conventional cascaded two level inverters with asymmetric dc bus voltages. The switching frequency of individual inverters is kept low throughout the modulation index. In the low speed region, hexagonal space phasor based PWM scheme and in the higher modulation region, 12-sided polygonal voltage space vector structure is used. Experimental results presented in this paper shows that the proposed converter is suitable for high power applications because of low harmonic distortion and low switching losses.
Resumo:
Objective: To provide a visual guide for oesophagogastric ulcer scoring and recognition of different morphological changes in the pars oesophagea. Design: Pig stomachs were collected at slaughter and visually evaluated and scored for parakeratosis, erosion and ulceration in the pars oesophagea. Results: A visual and descriptive guide is presented that will aid in the objective assessment and scoring of oesophagogastric ulceration in pigs within the pig health monitoring system (PHMS), namely to the four categories of 0 = normal stomach, 1 = parakeratosis and thickened epithelium, 2 = erosions and 3 = developed ulcers with and without stenosis. Conclusion: A visual guide has been developed that illustrates the full range of morphological changes that can occur in the pars oesophagea of the stomach within the few currently recognised stages of the disease.
Resumo:
It could be argued that advancing practice in critical care has been superseded by the advanced practice agenda. Some would suggest that advancing practice is focused on the core attributes of an individuals practice progressing onto advanced practice status. However, advancing practice is more of a process than identifiable skills and as such is often negated when viewing the development of practitioners to the advanced practice level. For example practice development initiatives can be seen as advancing practice for the masses which ensures that practitioners are following the same level of practice. The question here is; are they developing individually. To discuss the potential development of a conceptual model of knowledge integration pertinent to critical care nursing practice. In an attempt to explore the development of leading edge critical care thinking and practice, a new model for advancing practice in critical care is proposed. This paper suggests that reflection may not be the best model for advancing practice unless the individual practitioner has a sound knowledge base both theoretically and experientially. Drawing on the contemporary literature and recent doctoral research, the knowledge integration model presented here uses multiple learning strategies that are focused in practise to develop practice, for example the use of work-based learning and clinical supervision. Ongoing knowledge acquisition and its relationship with previously held theory and experience will enable individual practitioners to advance their own practice as well as being a resource for others.
Resumo:
Explore and describe a conceptual model of knowledge integration pertinent to the development of individual practitioners in critical care. Discussion of how multiple learning strategies that are embedded in practice can be beneficial in developing knowledge.
Resumo:
BACKGROUND The visual demands of modern classrooms are poorly understood yet are relevant in determining the levels of visual function required to perform optimally within this environment. METHODS Thirty-three Year 5 and 6 classrooms from eight south-east Queensland schools were included. Classroom activities undertaken during a full school day (9 am to 3 pm) were observed and a range of measurements recorded, including classroom environment (physical dimensions, illumination levels), text size and contrast of learning materials, habitual working distances (distance and estimated for near) and time spent performing various classroom tasks. These measures were used to calculate demand-related minimum criteria for distance and near visual acuity, contrast and sustained use of accommodation and vergence. RESULTS The visual acuity demands for distance and near were 0.33 ± 0.13 and 0.72 ± 0.09 logMAR, respectively (using habitual viewing distances and smallest target sizes) or 0.33 ± 0.09 logMAR assuming a 2.5 times acuity reserve for sustained near tasks. The mean contrast levels of learning materials at distance and near were greater than 70 per cent. Near tasks (47 per cent) dominated the academic tasks performed in the classroom followed by distance (29 per cent), distance to near (15 per cent) and computer-based (nine per cent). On average, children engaged in continuous near fixation for 23 ± 5 minutes at a time and during distance-near tasks performed fixation changes 10 ± 1 times per minute. The mean estimated habitual near working distance was 23 ± 1 cm (4.38 ± 0.24 D accommodative demand) and the vergence demand was 0.86 ± 0.07Δ at distance and 21.94 ± 1.09Δ at near assuming an average pupillary distance of 56 mm. CONCLUSIONS Relatively high levels of visual acuity, contrast demand and sustained accommodative-convergence responses are required to meet the requirements of modern classroom environments. These findings provide an evidence base to inform prescribing guidelines and develop paediatric vision screening protocols and referral criteria.
Resumo:
This paper describes a vision-only system for place recognition in environments that are tra- versed at different times of day, when chang- ing conditions drastically affect visual appear- ance, and at different speeds, where places aren’t visited at a consistent linear rate. The ma- jor contribution is the removal of wheel-based odometry from the previously presented algo- rithm (SMART), allowing the technique to op- erate on any camera-based device; in our case a mobile phone. While we show that the di- rect application of visual odometry to our night- time datasets does not achieve a level of perfor- mance typically needed, the VO requirements of SMART are orthogonal to typical usage: firstly only the magnitude of the velocity is required, and secondly the calculated velocity signal only needs to be repeatable in any one part of the environment over day and night cycles, but not necessarily globally consistent. Our results show that the smoothing effect of motion constraints is highly beneficial for achieving a locally consis- tent, lighting-independent velocity estimate. We also show that the advantage of our patch-based technique used previously for frame recogni- tion, surprisingly, does not transfer to VO, where SIFT demonstrates equally good performance. Nevertheless, we present the SMART system us- ing only vision, which performs sequence-base place recognition in extreme low-light condi- tions where standard 6-DOF VO fails and that improves place recognition performance over odometry-less benchmarks, approaching that of wheel odometry.