907 resultados para Virtual 3D model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The potential of integrating multiagent systems and virtual environments has not been exploited to its whole extent. This paper proposes a model based on grammars, called Minerva, to construct complex virtual environments that integrate the features of agents. A virtual world is described as a set of dynamic and static elements. The static part is represented by a sequence of primitives and transformations and the dynamic elements by a series of agents. Agent activation and communication is achieved using events, created by the so-called event generators. The grammar defines a descriptive language with a simple syntax and a semantics, defined by functions. The semantics functions allow the scene to be displayed in a graphics device, and the description of the activities of the agents, including artificial intelligence algorithms and reactions to physical phenomena. To illustrate the use of Minerva, a practical example is presented: a simple robot simulator that considers the basic features of a typical robot. The result is a functional simple simulator. Minerva is a reusable, integral, and generic system, which can be easily scaled, adapted, and improved. The description of the virtual scene is independent from its representation and the elements that it interacts with.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current RGB-D sensors provide a big amount of valuable information for mobile robotics tasks like 3D map reconstruction, but the storage and processing of the incremental data provided by the different sensors through time quickly become unmanageable. In this work, we focus on 3D maps representation and propose the use of the Growing Neural Gas (GNG) network as a model to represent 3D input data. GNG method is able to represent the input data with a desired amount of neurons or resolution while preserving the topology of the input space. Experiments show how GNG method yields a better input space adaptation than other state-of-the-art 3D map representation methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a study and analysis of surface normal-base descriptors for 3D object recognition. Specifically, we evaluate the behaviour of descriptors in the recognition process using virtual models of objects created from CAD software. Later, we test them in real scenes using synthetic objects created with a 3D printer from the virtual models. In both cases, the same virtual models are used on the matching process to find similarity. The difference between both experiments is in the type of views used in the tests. Our analysis evaluates three subjects: the effectiveness of 3D descriptors depending on the viewpoint of camera, the geometry complexity of the model and the runtime used to do the recognition process and the success rate to recognize a view of object among the models saved in the database.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many applications including object reconstruction, robot guidance, and. scene mapping require the registration of multiple views from a scene to generate a complete geometric and appearance model of it. In real situations, transformations between views are unknown and it is necessary to apply expert inference to estimate them. In the last few years, the emergence of low-cost depth-sensing cameras has strengthened the research on this topic, motivating a plethora of new applications. Although they have enough resolution and accuracy for many applications, some situations may not be solved with general state-of-the-art registration methods due to the signal-to-noise ratio (SNR) and the resolution of the data provided. The problem of working with low SNR data, in general terms, may appear in any 3D system, then it is necessary to propose novel solutions in this aspect. In this paper, we propose a method, μ-MAR, able to both coarse and fine register sets of 3D points provided by low-cost depth-sensing cameras, despite it is not restricted to these sensors, into a common coordinate system. The method is able to overcome the noisy data problem by means of using a model-based solution of multiplane registration. Specifically, it iteratively registers 3D markers composed by multiple planes extracted from points of multiple views of the scene. As the markers and the object of interest are static in the scenario, the transformations obtained for the markers are applied to the object in order to reconstruct it. Experiments have been performed using synthetic and real data. The synthetic data allows a qualitative and quantitative evaluation by means of visual inspection and Hausdorff distance respectively. The real data experiments show the performance of the proposal using data acquired by a Primesense Carmine RGB-D sensor. The method has been compared to several state-of-the-art methods. The results show the good performance of the μ-MAR to register objects with high accuracy in presence of noisy data outperforming the existing methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis a methodology for representing 3D subjects and their deformations in adverse situations is studied. The study is focused in providing methods based on registration techniques to improve the data in situations where the sensor is working in the limit of its sensitivity. In order to do this, it is proposed two methods to overcome the problems which can difficult the process in these conditions. First a rigid registration based on model registration is presented, where the model of 3D planar markers is used. This model is estimated using a proposed method which improves its quality by taking into account prior knowledge of the marker. To study the deformations, it is proposed a framework to combine multiple spaces in a non-rigid registration technique. This proposal improves the quality of the alignment with a more robust matching process that makes use of all available input data. Moreover, this framework allows the registration of multiple spaces simultaneously providing a more general technique. Concretely, it is instantiated using colour and location in the matching process for 3D location registration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the beginning of 3D computer vision problems, the use of techniques to reduce the data to make it treatable preserving the important aspects of the scene has been necessary. Currently, with the new low-cost RGB-D sensors, which provide a stream of color and 3D data of approximately 30 frames per second, this is getting more relevance. Many applications make use of these sensors and need a preprocessing to downsample the data in order to either reduce the processing time or improve the data (e.g., reducing noise or enhancing the important features). In this paper, we present a comparison of different downsampling techniques which are based on different principles. Concretely, five different downsampling methods are included: a bilinear-based method, a normal-based, a color-based, a combination of the normal and color-based samplings, and a growing neural gas (GNG)-based approach. For the comparison, two different models have been used acquired with the Blensor software. Moreover, to evaluate the effect of the downsampling in a real application, a 3D non-rigid registration is performed with the data sampled. From the experimentation we can conclude that depending on the purpose of the application some kernels of the sampling methods can improve drastically the results. Bilinear- and GNG-based methods provide homogeneous point clouds, but color-based and normal-based provide datasets with higher density of points in areas with specific features. In the non-rigid application, if a color-based sampled point cloud is used, it is possible to properly register two datasets for cases where intensity data are relevant in the model and outperform the results if only a homogeneous sampling is used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El presente proyecto tiene por finalidad investigar los diferentes procesos de aprendizaje e interacciones que tienen lugar través del desarrollo y aplicaciones de estrategias innovadoras en ambientes mediados por las TIC en el ámbito de la Biología, la Física y la Química. Esta propuesta se llevará a cabo a través de cuatro componentes articuladas que se integran a través de su marco teórico y en su utilización en la práctica áulica. El primero de ellos se refiere al desarrollo, aplicación y evaluación de materiales que involucran diferentes procesos centrados en la modelización. Proponemos identificar, adaptar y aplicar una serie de recursos tecnológicos usados en la modelización. Se investigarán distintos aspectos generando dimensiones y categorías de análisis que permitan caracterizarlos. Dentro de ellos se usarán las simulaciones para la enseñanza la Física, específicamente se tratará de identificar las dificultades que presentan los estudiantes al resolver problemas aplicando las Leyes de Newton y generar una propuesta didáctica que incluya una simulación Applet Java para el aprendizaje de este contenido con su correspondiente evaluación. Otro recurso tecnológico que se estudiará tiene que ver con las animaciones llevadas a cabo por computadora. Se utilizará la estrategia Stopmotion para el aprendizaje de diferentes aspectos de la división celular en Biología, con alumnos de escuelas secundaria, investigando los aprendizajes y las producciones realizadas por estudiantes que trabajan de manera no tradicional. También se propone el uso de dos laboratorios virtuales con alumnos del profesorado en Biología, lo que permite comprender conceptos que habitualmente requieren experimentación fáctica, uno para la identificación de ADN a través de electroforesis en gel y el otro para la contaminación del agua. Se propone generar las guías de laboratorio basada en resolución de problemas a investigar la innovación a través de encuestas y entrevistas. Se investigarán el impacto de este recurso, las actitudes de los estudiantes frente a esta estrategia y sus aprendizajes. También se investigará la aplicación de un video juego educativo Kokori en 3D, de distribución gratuita, libre cuyo objetivo es poner en evidencia la comprensión de los procesos metabólicos de las células. Se aplicará a docentes de formación inicial analizando la interacción con los saberes de los estudiantes a través de situaciones en un escenario lúdico. Toda la investigación de esta componente estará centrada en la caracterización de los materiales, su evaluación, los aprendizajes con procesos de modelización. La segunda componente investiga las características que presentan las argumentaciones que se abordan en los procesos de lectura y escritura que se promueven cuando se trabaja con las TIC. Se analizarán las producciones escritas realizadas por docentes y estudiantes en las redes sociales y otros materiales desarrollados y aplicados en la componente anterior. El tercer componente se refiere al estudio de la interacción y comunicación que se promueva entre los participantes de los trabajos virtuales y de las redes sociales que intervienen, tales como Facebook y Twiter. Se considerará las dimensiones, categorías e indicadores que dan cuanta de los proceso de comunicación en estos entornos. El último componente, es el análisis de los procesos y negociaciones respecto de los enunciados, como las premisas que representan el conocimiento, que se ponen en juego en distintas propuestas elaboradas por los futuros profesores de biología en recursos como la Webquest. El enfoque metodológico usado integra técnicas y procedimientos cuantitativos y cualitativos. La contribución teórica permitirá caracterizar diferentes aspectos de la enseñanza de las ciencias naturales introduciendo TIC y como aporte novedoso se espera consolidar una red de comunicaciones entre los docentes, los estudiantes y los investigadores involucrados en el proyecto.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The similarity of issues and geographical proximity have led the Visegrad 4 countries (V4) to undertake closer collaboration in natural gas policy, notably by agreeing on a common security of supply strategy, including regional emergency planning, and a common implementation of the Gas Target Model (GTM) that European regulators have proposed for the medium-long term design of the EU gas market, and which has been endorsed by the Madrid Regulatory Forum. As a contribution to this collaboration, the present paper will analyse how the GTM may be implemented in the V4 region, with a view to maximize the benefits that arise from joint implementation. A most relevant conclusion of the GTM is that markets should be large enough to attract market players and investments, so that sufficient diversity of sources may be reached and market power indicators are kept below dangerous levels. In most cases, this requires physical and/or virtual interconnection of present markets, which is also useful to achieve the required security of supply standards, as envisaged in the Regulation 994/2010/EC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to view and interact with 3D models has been happening for a long time. However, vision-based 3D modeling has only seen limited success in applications, as it faces many technical challenges. Hand-held mobile devices have changed the way we interact with virtual reality environments. Their high mobility and technical features, such as inertial sensors, cameras and fast processors, are especially attractive for advancing the state of the art in virtual reality systems. Also, their ubiquity and fast Internet connection open a path to distributed and collaborative development. However, such path has not been fully explored in many domains. VR systems for real world engineering contexts are still difficult to use, especially when geographically dispersed engineering teams need to collaboratively visualize and review 3D CAD models. Another challenge is the ability to rendering these environments at the required interactive rates and with high fidelity. In this document it is presented a virtual reality system mobile for visualization, navigation and reviewing large scale 3D CAD models, held under the CEDAR (Collaborative Engineering Design and Review) project. It’s focused on interaction using different navigation modes. The system uses the mobile device's inertial sensors and camera to allow users to navigate through large scale models. IT professionals, architects, civil engineers and oil industry experts were involved in a qualitative assessment of the CEDAR system, in the form of direct user interaction with the prototypes and audio-recorded interviews about the prototypes. The lessons learned are valuable and are presented on this document. Subsequently it was prepared a quantitative study on the different navigation modes to analyze the best mode to use it in a given situation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An industrial manipulator equipped with an automatic clay extruder is used to realize a machine that can manufacture additively clay objects. The desired geometries are designed by means of a 3D modeling software and then sliced in a sequence of layers with the same thickness of the extruded clay section. The profiles of each layer are transformed in trajectories for the extruder and therefore for the end-effector of the manipulator. The goal of this thesis is to improve the algorithm for the inverse kinematic resolution and the integration of the routine within the development software that controls the machine (Rhino/Grasshopper). The kinematic model is described by homogeneous transformations, adopting the Denavit-Hartenberg standard convention. The function is implemented in C# and it has been preliminarily tested in Matlab. The outcome of this work is a substantial reduction of the computation time relative to the execution of the algorithm, which is halved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The world's largest fossil oyster reef, formed by the giant oyster Crassostrea gryphoides and located in Stetten (north of Vienna, Austria) is studied by Harzhauser et al., 2015, 2016; Djuricic et al., 2016. Digital documentation of the unique geological site is provided by terrestrial laser scanning (TLS) at the millimeter scale. Obtaining meaningful results is not merely a matter of data acquisition with a suitable device; it requires proper planning, data management, and postprocessing. Terrestrial laser scanning technology has a high potential for providing precise 3D mapping that serves as the basis for automatic object detection in different scenarios; however, it faces challenges in the presence of large amounts of data and the irregular geometry of an oyster reef. We provide a detailed description of the techniques and strategy used for data collection and processing in Djuricic et al., 2016. The use of laser scanning provided the ability to measure surface points of 46,840 (estimated) shells. They are up to 60-cm-long oyster specimens, and their surfaces are modeled with a high accuracy of 1 mm. In addition to laser scanning measurements, more than 300 photographs were captured, and an orthophoto mosaic was generated with a ground sampling distance (GSD) of 0.5 mm. This high-resolution 3D information and the photographic texture serve as the basis for ongoing and future geological and paleontological analyses. Moreover, they provide unprecedented documentation for conservation issues at a unique natural heritage site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structure from Motion (SfM) is a new form of photogrammetry that automates the rendering of georeferenced 3D models of objects using digital photographs and independently surveyed Ground Control Points (GCPs). This project seeks to quantify the error found in Digital Elevation Models (DEMs) produced using SfM. I modeled a rockslide found at the Cadman Quarry (Monroe, Washington) because the surface is vegetation-free, which is ideal for SfM and Terrestrial LiDAR Scanner (TLS) surveys. By using SfM, TLS, and GPS positioning at the same time, I attempted to find the deviation in the SfM model from the TLS model and GPS points. Using the deviation, I found the Root-Mean-Square Error (RMSE) between the SfM DEM and GPS positions. The RMSE of the SfM model when compared to surveyed GPS points is 17cm. I propagated the uncertainty of the GPS points with the RMSE of the SfM model to find the uncertainty of the SfM model compared to the NAD 1984 datum. The uncertainty of the SfM model compared to the NAD 1984 is 27cm. This study did not produce a model from the TLS that had sufficient resolution on horizontal surfaces to compare to surveyed GPS points.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The power required to operate large gyratory mills often exceeds 10 MW. Hence, optimisation of the power consumption will have a significant impact on the overall economic performance and environmental impact of the mineral processing plant. In most of the published models of tumbling mills (e.g. [Morrell, S., 1996. Power draw of wet tumbling mills and its relationship to charge dynamics, Part 2: An empirical approach to modelling of mill power draw. Trans. Inst. Mining Metall. (Section C: Mineral Processing Ext. Metall.) 105, C54-C62. Austin, L.G., 1990. A mill power equation for SAG mills. Miner. Metall. Process. 57-62]), the effect of lifter design and its interaction with mill speed and filling are not incorporated. Recent experience suggests that there is an opportunity for improving grinding efficiency by choosing the appropriate combination of these variables. However, it is difficult to experimentally determine the interactions of these variables in a full scale mill. Although some work has recently been published using DEM simulations, it was basically. limited to 2D. The discrete element code, Particle Flow Code 3D (PFC3D), has been used in this work to model the effects of lifter height (525 cm) and mill speed (50-90% of critical) on the power draw and frequency distribution of specific energy (J/kg) of normal impacts in a 5 m diameter autogenous (AG) mill. It was found that the distribution of the impact energy is affected by the number of lifters, lifter height, mill speed and mill filling. Interactions of lifter design, mill speed and mill filling are demonstrated through three dimensional distinct element methods (3D DEM) modelling. The intensity of the induced stresses (shear and normal) on lifters, and hence the lifter wear, is also simulated. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Lattice Solid Model has been used successfully as a virtual laboratory to simulate fracturing of rocks, the dynamics of faults, earthquakes and gouge processes. However, results from those simulations show that in order to make the next step towards more realistic experiments it will be necessary to use models containing a significantly larger number of particles than current models. Thus, those simulations will require a greatly increased amount of computational resources. Whereas the computing power provided by single processors can be expected to increase according to Moore's law, i.e., to double every 18-24 months, parallel computers can provide significantly larger computing power today. In order to make this computing power available for the simulation of the microphysics of earthquakes, a parallel version of the Lattice Solid Model has been implemented. Benchmarks using large models with several millions of particles have shown that the parallel implementation of the Lattice Solid Model can achieve a high parallel-efficiency of about 80% for large numbers of processors on different computer architectures.