918 resultados para Venn Diagrams
Resumo:
We analyze double Higgs boson production at the Large Hadron Collider in the context of Little Higgs models. In double Higgs production, the diagrams involved are directly related to those that cause the cancellation of the quadratic divergence of the Higgs self-energy, providing a robust prediction for this class of models. We find that in extensions of this model with the inclusion of a so-called T-parity, there is a significant enhancement in the cross sections as compared to the Standard Model. © SISSA 2006.
Resumo:
Fenton 's reagent was used as coagulant agent to treat water with high true color (100 ± 5 HU) caused by the introduction of humic substances extracted from peat, using dissolved air flotation. The pair value of coagulant dosage x coagulation pH was optimized to posterior construction of coagulation diagrams, reaching apparent color removal efficiency slightly superior to 60%. It was tried to simulate a treatment with complete cycle, carrying out an experiment with sand filtration after flotation, obtaining an effluent with excellent quality, presenting remnant apparent color, turbidity and absorbance of 253.7 nm less or equal to 2 HU, 0.40 TU and 0.009 cm -1, respectively, and residual total iron < 0.005 mg/L and DOC < 0.001 mg/L.
Resumo:
In this paper a comparative analysis of the environmental impact caused by the use of natural gas and diesel in thermoelectric power plants utilizing combined cycle is performed. The objective is to apply a thermoeconomical analysis in order to compare the two proposed fuels. In this analysis, a new methodology that incorporates the economical engineering concept to the ecological efficiency once Cardu and Baica [1, 2], which evaluates, in general terms, the environmental impacts caused by CO2, SO2, NOx and Particulate Matter (PM), adopting as reference the air quality standards in vigour is employed. The thermoeconomic model herein proposed utilizes functional diagrams that allow the minimization the Exergetic Manufacturing Cost, which represents the cost of production of electricity incorporating the environmental impact effects to study the performance of the thermoelectric power plant [3,4], It follows that it is possible to determine the environmental impact caused by thermoelectric power plants and, under the ecological standpoint, the use of natural gas as a fuel is the best option compared to the use of the diesel, presenting ecological efficiency values of 0.944 and 0.914 respectively. From the Exergoeconomic point of view of, it was found out that the EMC (Exergetic Manufacturing Cost) is better when natural gas is used as fuel compared to the diesel fuel. Copyright © 2006 by ASME.
Resumo:
The optimal combination of the mechanical characteristics of austempered spheroidal graphitic cast steel together with modern casting techniques yielded an economically promising product. The maximum potential of the usage of these steels is related to fabrication and characterization techniques, among which, one of the most important is the cooling diagram (TTT curve). In this work, 3 heats of graphitic steels with the following nominal compositions were cast: 1.0 % C, 2.3 % Si, 0.4 % Mn, and with niobium contents of. 0.0 %, 0.5 % and 1.0 %. TTT curves were determined by dilatometric testing and test specimens of these steels were austempered. The samples were then characterized by hardness testing and optical and SEM microscopy. Tensile, impact (no notch) and wear testing were also performed. The addition of niobium produced significant alterations in the TTT diagrams. Increasing niobium content moves the pearlite transformation nose to the right and the bainitic transformation nose to the left. Tensile strength of these alloys was high, in the range of 1700 MPa and impact values were around of 45 Joules for alloy with 1 % Nb, 49 Joules for alloy with 0.5 % Nb and fracture did not occur for the alloy without the addition of Nb.
Resumo:
The scattering of charmed mesons on nucleons is investigated within a chiral quark model inspired on the QCD Hamiltonian in Coulomb gauge. The microscopic model incorporates a longitudinal Coulomb confining interaction derived from a self-consistent quasi-particle approximation to the QCD vacuum, and a traverse hyperfine interaction motivated from lattice simulations of QCD in Coulomb gauge. From the microscopic interactions at the quark level, effective meson-baryon interactions are derived using a mapping formalism that leads to quark-Born diagrams. As an application, the total cross-section of heavy-light D-mesons scattering on nucleons is estimated.
Resumo:
The optimal combination of the mechanical characteristics of austempered spheroidal graphitic cast steel together with modern casting techniques yielded an economically promising product. The maximum potentiality of the usage of these steels is related to fabrication and characterization techniques, among which, one of the most important is the cooling diagram (TTT curve). In this work, 3 heats of graphitic steels with the following nominal compositions were cast: 1.0%C, 2.3%Si, 0.4% Mn, and with niobium contents of 0.0%, 0.5% and 1.0%. TTT curves were determined by dilatometric testing and test specimens of these steels were austempered. The samples were then characterized by hardness testing and optical and SEM microscopy. Tensile, impact (no notch) and wear testing were also performed. The addition of niobium produced significant alterations in the TTT diagrams. Increasing niobium content moves the pearlite transformation nose to the right and the bainitic transformation nose to the left. Tensile strength of these alloys was high, in the range of 1700 MPa and impact values were around of 45 Joules for alloy with 1% Nb, 49 Joules for alloy with 0.5% Nb and fracture did not occur for the alloy without the addition of Nb.
Resumo:
We discuss dynamics of a vibro-impact system consisting of a cart with an piecewise-linear restoring force, which vibrates under driving by a source with limited power supply. From the point of view of dynamical systems, vibro-impact systems exhibit a rich variety of phenomena, particularly chaotic motion. In our analyzes, we use bifurcation diagrams, basins of attractions, identifying several non-linear phenomena, such as chaotic regimes, crises, intermittent mechanisms, and coexistence of attractors with complex basins of attraction. © 2009 by ASME.
Resumo:
We implement a singularity theory approach, the path formulation, to classify D3-equivariant bifurcation problems of corank 2, with one or two distinguished parameters, and their perturbations. The bifurcation diagrams are identified with sections over paths in the parameter space of a Ba-miniversal unfolding f0 of their cores. Equivalence between paths is given by diffeomorphisms liftable over the projection from the zero-set of F0 onto its unfolding parameter space. We apply our results to degenerate bifurcation of period-3 subharmonics in reversible systems, in particular in the 1:1-resonance.
Resumo:
Multipulse rectifier topologies based on autoconnections, or differential connections, are more and more applied as interface stages between the mains and power converters. These topologies mitigate many low-order current harmonics in the utility, reducing the THD (total harmonic distortion) and increasing the power factor. This paper presents a mathematical model based on phasor diagrams, that results in a single expression able to unify all differential topologies connections (Delta and Wye), for both step-up or step-down autotransformers, for 12 and 18-pulse AC-DC converters. The proposed family of converters can be designed for any relationship between the input voltage and the load voltage. An immediate application would be the retrofit, i.e. to replace a conventional rectifier with poor quality of the processed energy by the 12 or 18 pulses rectifier with Wye or Delta-differential connection. The design procedure, simple and fast, is developed and tested for a prototype rating 6 kW and 250 V on the DC load © 2010 IEEE.
Resumo:
A model of the DN interaction is presented which is developed in close analogy to the meson-exchange KN potential of the Jülich group utilizing SU(4) symmetry constraints. The main ingredients of the interaction are provided by vector meson (ρ, ω) exchange and higher-order box diagrams involving D *N, DΔ, and D *Δ intermediate states. The coupling of DN to the π Λ c and π Σ c channels is taken into account. The interaction model generates the Λ c(2595)-resonance dynamically as a DN quasi-bound state. Results for DN total and differential cross sections are presented and compared with predictions of two interaction models that are based on the leading-order Weinberg-Tomozawa term. Some features of the Λ c(2595)-resonance are discussed and the role of the near-by π Σ c threshold is emphasized. Selected predictions of the orginal KN model are reported too. Specifically, it is pointed out that the model generates two poles in the partial wave corresponding to the Λ(1405)-resonance. © 2011 SIF, Springer-Verlag Berlin Heidelberg.
Resumo:
Multipulse rectifier topologies based on auto-connections or differential connections, are more and more applied as interface stages between the mains and power converters. These topologies are becoming increasingly attractive not only for robustness, but to mitigate many low order current harmonics in the utility, reducing the total harmonic distortion of the line currents (THDi) and increasing the power factor requirements. Unlike isolated connections (delta-wye, zigzag, etc.), when the differential transformer is employed, most of the energy required by the load is directly conducted through the windings. Thus, only a small fraction of the kVA is processed by the magnetic core. This feature increases the power density of the converter. This paper presents a mathematical model based on phasor diagrams, which results in a single expression able to merge all differential connections (wye and delta), for both step-up and step-down rectifiers for 12 or 18 pulses. The proposed family of converters can be designed for any relationship between the line input voltage and the DC voltage, unlike the conventional phase-shift voltage connections. An immediate application would be the retrofit, i.e. to replace a conventional rectifier with poor quality of the processed energy by the 12 or 18-pulse rectifiers with Wye or Delta-differential connections, keeping the original values for the input and load voltages. The simple and fast design procedure is developed and tested for a prototype rating 6 kW and 400 V on DC load.
Resumo:
Includes bibliography
Resumo:
Incluye Bibliografía
Resumo:
In last decades, control of nonlinear dynamic systems became an important and interesting problem studied by many authors, what results the appearance of lots of works about this subject in the scientific literature. In this paper, an Atomic Force Microscope micro cantilever operating in tapping mode was modeled, and its behavior was studied using bifurcation diagrams, phase portraits, time history, Poincare maps and Lyapunov exponents. Chaos was detected in an interval of time; those phenomena undermine the achievement of accurate images by the sample surface. In the mathematical model, periodic and chaotic motion was obtained by changing parameters. To control the chaotic behavior of the system were implemented two control techniques. The SDRE control (State Dependent Riccati Equation) and Time-delayed feedback control. Simulation results show the feasibility of the bothmethods, for chaos control of an AFM system. Copyright © 2011 by ASME.
Resumo:
We investigate the nonlinear oscillations in a free surface of a fluid in a cylinder tank excited by non-ideal power source, an electric motor with limited power supply. We study the possibility of parametric resonance in this system, showing that the excitation mechanism can generate chaotic response. Additionally, the dynamics of parametrically excited surface waves in the tank can reveal new characteristics of the system. The fluid-dynamic system is modeled in such way as to obtain a nonlinear differential equation system. Numerical experiments are carried out to find the regions of chaotic solutions. Simulation results are presented as phase-portrait diagrams characterizing the resonant vibrations of free fluid surface and the existence of several types of regular and chaotic attractors. We also describe the energy transfer in the interaction process between the hydrodynamic system and the electric motor. Copyright © 2011 by ASME.