980 resultados para Uniformly Convex
Resumo:
According to Grivaux, the group GL(X) of invertible linear operators on a separable infinite dimensional Banach space X acts transitively on the set s (X) of countable dense linearly independent subsets of X. As a consequence, each A? s (X) is an orbit of a hypercyclic operator on X. Furthermore, every countably dimensional normed space supports a hypercyclic operator. Recently Albanese extended this result to Fréchet spaces supporting a continuous norm. We show that for a separable infinite dimensional Fréchet space X, GL(X) acts transitively on s (X) if and only if X possesses a continuous norm. We also prove that every countably dimensional metrizable locally convex space supports a hypercyclic operator.
Resumo:
Glycation of lipoproteins is implicated in the development of the macro- and microvascular complications of diabetes, atherosclerosis in general, and other disease processes including aging. Enhanced glycation may have direct effects, and may also amplify the effects of oxidative stress on lipoproteins. Most studies have examined the effects of glycation of LDL, particularly with respect to its atherogenicity. Other lipoproteins are more difficult to study because their several apolipoproteins, being of varying age, are not uniformly exposed to glucose. Inhibition of the combined stresses of glycation and oxidation towards lipoproteins may have beneficial effects on health.
Resumo:
This article introduces a resource allocation solution capable of handling mixed media applications within the constraints of a 60 GHz wireless network. The challenges of multimedia wireless transmission include high bandwidth requirements, delay intolerance and wireless channel availability. A new Channel Time Allocation Particle Swarm Optimization (CTA-PSO) is proposed to solve the network utility maximization (NUM) resource allocation problem. CTA-PSO optimizes the time allocated to each device in the network in order to maximize the Quality of Service (QoS) experienced by each user. CTA-PSO introduces network-linked swarm size, an increased diversity function and a learning method based on the personal best, Pbest, results of the swarm. These additional developments to the PSO produce improved convergence speed with respect to Adaptive PSO while maintaining the QoS improvement of the NUM. Specifically, CTA-PSO supports applications described by both convex and non-convex utility functions. The multimedia resource allocation solution presented in this article provides a practical solution for real-time wireless networks.
Resumo:
Background: Clinical supervision takes place once the newly qualified nurse is employed in clinical practice. However, often the variety and diversity of nursing jobs can result in a hit and miss delivery of supervision training. By introducing training uniformly at undergraduate stage a more seamless transition may occur (McColgan K, Rice C. 2012).
There is an increased interest in higher education in the use of online learning resources for students. As part completion of a DNP an App. for training students in clinical supervision was developed.
Aim: The creation of a clinical supervision training App. for use in undergraduate nursing.
Objectives:
•To develop a teaching tool that is up to date, current and easily accessible to students.
•To introduce supervision training for undergraduate nursing students
•To motivate the undergraduate nursing student to identify examples from their clinical experience to encourage change and promote professional development.
Approach:
Stage 1
In 2010/11 informal inquiries with senior nurses regarding the introduction of supervision training in undergraduate nursing
Stage 2
A review of UK supervision training.
Stage 3
Template production of teaching tool.
Stage 4
Collaboration with a computer technician to transfer multimedia outputs onto an App.
Stage 5
App. piloted with lecturers (n=4) and post registration students (n=20).
Stage 6
Minor alterations made to App. design template
Stage 7
App. included in an experimental study looking at online learning versus blended learning June 2013 (n=61, n=63)
Conclusion: A collaborative approach to the development of any educational programme is essential to ensure the success of the final teaching product (McCutcheon 2013). The end result is that this App. could be:
•Made available to nurses in the UK.
•Adapted to suit other healthcare professionals and students.
•Used as a prototype for other healthcare related subjects.
McColgan K., Rice C. (2012) An online training resource for clinical supervision. Nursing Standard, 26(24) 35-39.
McCutcheon K. (2013) Development of a multi-media book for clinical supervision training in an undergraduate nursing programme. Journal of Nursing Education and Practice, 3(5) 31-38.
Resumo:
Herein we report the intra- and inter-molecular assembly of a {V5O9} subunit. This mixed-valent structural motif can be stabilised as [V5O9(L1–3)4]5−/9− (1–3) by a range of organoarsonate ligands (L1–L3) whose secondary functionalities influence its packing arrangement within the crystal structures. Variation of the reaction conditions results in the dodecanuclear cage structure [V12O14(OH)4(L1)10]4− (4) where two modified convex building units are linked via two dimeric {O4VIV(OH)2VIVO4} moieties. Bi-functional phosphonate ligands, L4–L6 allow the intramolecular connectivity of the {V5O9} subunit to give hybrid capsules [V10O18(L4–6)4]10− (5–7). The dimensions of the electrophilic cavities of the capsular entities are determined by the incorporated ligand type. Mass spectrometry experiments confirm the stability of the complexes in solution. We investigate and model the temperature-dependent magnetic properties of representative complexes 1, 4, 6 and 7 and provide preliminary cell-viability studies of three different cancer cell lines with respect to Na8H2[6]·36H2O and Na8H2[7]·2DMF·29H2O.
Resumo:
The influence of the layered silicate clay platelets on the nitrogen permeation properties of hydrogenated nitrile butadiene rubber (HNBR)/nanoclay nanocomposites has been investigated. Nanocomposites of HNBR modified with different percentages of the organoclay are processed through various routes. Commercially available organoclay (CLOISITE 15A) and various silane-coupling agents are used to improve the dispersion of the nanoclay in HNBR. A total of 10 different formulations of nanocomposites are manufactured. The addition of the organoclay has resulted in a significant enhancement of the nitrogen barrier properties of the manufactured nanocomposite. The mechanism of the reduction in the permeability is explained through the changes in the morphology and its bond to the filler. These changes are confirmed through examination of the morphology using x-ray diffraction, transmission electron microscope, and dynamic mechanical thermal analysis. There has been a drastic reduction up to 55.7% in nitrogen permeability. The reduction in gas permeation in HNBR is attributed to uniformly exfoliated clay platelets. Finally, three different permeability models, namely, the Nielsen model, modified Nielsen model, and Cussler model, have also been considered to predict the permeability behavior of nanocomposites with different volume filler fractions. The experimental values of gas permeability have been compared with theoretical models. It is observed that the modified Nielsen model closely matches with the measured permeation behavior. © 2011 Wiley Periodicals, Inc.
Resumo:
Context. Comet 67P/Churyumov-Gerasimenko is the target of the European Space Agency Rosetta spacecraft rendez-vous mission. Detailed physical characteristation of the comet before arrival is important for mission planning as well as providing a test bed for ground-based observing and data-analysis methods. Aims: To conduct a long-term observational programme to characterize the physical properties of the nucleus of the comet, via ground-based optical photometry, and to combine our new data with all available nucleus data from the literature. Methods: We applied aperture photometry techniques on our imaging data and combined the extracted rotational lightcurves with data from the literature. Optical lightcurve inversion techniques were applied to constrain the spin state of the nucleus and its broad shape. We performed a detailed surface thermal analysis with the shape model and optical photometry by incorporating both into the new Advanced Thermophysical Model (ATPM), along with all available Spitzer 8-24 μm thermal-IR flux measurements from the literature. Results: A convex triangular-facet shape model was determined with axial ratios b/a = 1.239 and c/a = 0.819. These values can vary by as much as 7% in each axis and still result in a statistically significant fit to the observational data. Our best spin state solution has Psid = 12.76137 ± 0.00006 h, and a rotational pole orientated at Ecliptic coordinates λ = 78°(±10°), β = + 58°(±10°). The nucleus phase darkening behaviour was measured and best characterized using the IAU HG system. Best fit parameters are: G = 0.11 ± 0.12 and HR(1,1,0) = 15.31 ± 0.07. Our shape model combined with the ATPM can satisfactorily reconcile all optical and thermal-IR data, with the fit to the Spitzer 24 μm data taken in February 2004 being exceptionally good. We derive a range of mutually-consistent physical parameters for each thermal-IR data set, including effective radius, geometric albedo, surface thermal inertia and roughness fraction. Conclusions: The overall nucleus dimensions are well constrained and strongly imply a broad nucleus shape more akin to comet 9P/Tempel 1, rather than the highly elongated or "bi-lobed" nuclei seen for comets 103P/Hartley 2 or 8P/Tuttle. The derived low thermal inertia of
Resumo:
OBJECTIVE: The present work was planned to report the incidence of calcification and ossification of an isolated cranial dural fold. The form, degree of severity and range of extension of such changes will be described. Involvement of the neighboring brain tissue and blood vessels, whether meningeal or cerebral, will also be determined. The results of this study might highlight the occasional incidence of intracranial calcification and ossification in images of the head and their interpretation, by radiologists and neurologists, to be of dural or vascular origin.
METHODS: Two human formalin-fixed cadavers, one middle-aged female another older male, were investigated at the Anatomy Laboratory, College of Medicine, King Faisal University, Dammam, Kingdom of Saudi Arabia during the period from 2000 to 2003. In each cadaver, the skullcap was removed and the convexity of the cranial dura mater, as well as the individual dural folds, were carefully examined for any calcification or ossification. The meningeal and cerebral blood vessels together with the underlying brain were grossly inspected for such structural changes. Calcified or ossified tissues, when identified, were subjected to histological examination to confirm their construction.
RESULTS: The female cadaver showed a calcified parietal emissary vein piercing the skullcap and projecting into the scalp. The latter looked paler and deficient in hair on its right side. The base of the stump was surrounded by a granular patch of calcification. The upper convex border of the falx cerebri was hardened and it presented granules, plaques and a cauliflower mass, which all proved to be osseous in structure. The meningeal and right cerebral vessels were mottled with calcium granules. The underlying temporal and parietal lobes of the right cerebral hemisphere were degenerated. The male cadaver also revealed a calcified upper border of the falx cerebri and superior sagittal sinus. Osseous granules and plaques, similar to those of the first specimen, were also identified but without gross changes in the underlying brain.
CONCLUSION: Calcification or ossification of an isolated site of the cranial dura mater and the intracranial blood vessels might occur. These changes should be kept in mind while interpreting images of the skull and brain. Clinical assessment and laboratory investigations are required to determine whether these changes are idiopathic, traumatic, or as a manifestation of a generalized disease such as hyperparathyroidism, vitamin D-intoxication, or chronic renal failure.
Resumo:
Many modeling problems require to estimate a scalar output from one or more time series. Such problems are usually tackled by extracting a fixed number of features from the time series (like their statistical moments), with a consequent loss in information that leads to suboptimal predictive models. Moreover, feature extraction techniques usually make assumptions that are not met by real world settings (e.g. uniformly sampled time series of constant length), and fail to deliver a thorough methodology to deal with noisy data. In this paper a methodology based on functional learning is proposed to overcome the aforementioned problems; the proposed Supervised Aggregative Feature Extraction (SAFE) approach allows to derive continuous, smooth estimates of time series data (yielding aggregate local information), while simultaneously estimating a continuous shape function yielding optimal predictions. The SAFE paradigm enjoys several properties like closed form solution, incorporation of first and second order derivative information into the regressor matrix, interpretability of the generated functional predictor and the possibility to exploit Reproducing Kernel Hilbert Spaces setting to yield nonlinear predictive models. Simulation studies are provided to highlight the strengths of the new methodology w.r.t. standard unsupervised feature selection approaches. © 2012 IEEE.
Resumo:
Purpose: To determine differences in overall tumor responses measured by volumetric assessment and bioluminescence imaging (BLI) following exposure to uniform and non-uniform radiation fields in an ectopic prostate tumor model.
Materials and methods: Bioluminescent human prostate tumor xenografts were established by subcutaneous implantation into male mice. Tumors were irradiated with uniform or non-uniform field configurations using conventional in vivo irradiation procedures performed using a 225 kVp generator with custom lead shielding. Tumor responses were measured using Vernier calipers and by BLI using an in vivo imaging system. Survival was defined as the time to quadroupling of pre-treatment tumor volume.
Results: The correlation between BLI and tumor volume measurements was found to be different for un-irradiated (R = 0.61), uniformly irradiated (R = 0.34) and partially irradiated (R = 0.30) tumors. Uniformly irradiated tumors resulted in an average tumor growth delay of 60 days with median survival of 75 days, compared to partially irradiated tumors which showed an average growth delay of 24 days and median survival of 38 days.
Conclusions: Correlation between BLI and tumor volume measurements is lower for partially irradiated tumors than those exposed to uniform dose distributions. The response of partially irradiated tumors suggests non-uniformity in response beyond physical dose distribution within the target volume. Dosimetric uncertainty associated with conventional in vivo irradiation procedures prohibits their ability to accurately determine tumor response to non-uniform radiation fields and stresses the need for image guided small animal radiation research platforms.
Resumo:
A basic intuition is that arbitrage is easier when markets are most liquid. Surprisingly, we find that momentum profits are markedly larger in liquid market states. This finding is not explained by variation in liquidity risk, time-varying exposure to risk factors, or changes in macroeconomic condition, cross-sectional return dispersion, and investor sentiment. The predictive performance of aggregate market illiquidity for momentum profits uniformly exceed that of market return and market volatility states. While momentum strategies are unconditionally unprofitable in US, Japan, and Eurozone countries in the last decade, they are substantial following liquid market states.
Resumo:
Credal networks relax the precise probability requirement of Bayesian networks, enabling a richer representation of uncertainty in the form of closed convex sets of probability measures. The increase in expressiveness comes at the expense of higher computational costs. In this paper, we present a new variable elimination algorithm for exactly computing posterior inferences in extensively specified credal networks, which is empirically shown to outperform a state-of-the-art algorithm. The algorithm is then turned into a provably good approximation scheme, that is, a procedure that for any input is guaranteed to return a solution not worse than the optimum by a given factor. Remarkably, we show that when the networks have bounded treewidth and bounded number of states per variable the approximation algorithm runs in time polynomial in the input size and in the inverse of the error factor, thus being the first known fully polynomial-time approximation scheme for inference in credal networks.
Resumo:
Economic and environmental load dispatch aims to determine the amount of electricity generated from power plants to meet load demand while minimizing fossil fuel costs and air pollution emissions subject to operational and licensing requirements. These two scheduling problems are commonly formulated with non-smooth cost functions respectively considering various effects and constraints, such as the valve point effect, power balance and ramp rate limits. The expected increase in plug-in electric vehicles is likely to see a significant impact on the power system due to high charging power consumption and significant uncertainty in charging times. In this paper, multiple electric vehicle charging profiles are comparatively integrated into a 24-hour load demand in an economic and environment dispatch model. Self-learning teaching-learning based optimization (TLBO) is employed to solve the non-convex non-linear dispatch problems. Numerical results on well-known benchmark functions, as well as test systems with different scales of generation units show the significance of the new scheduling method.
Resumo:
As the emphasis on initiatives that can improve environmental efficiency while simultaneously maintaining economic viability has escalated in recent years, attention has turned to more radical concepts of operation. In particular, the cruiser–feeder concept has shown potential for a new generation, environmentally friendly, air-transport system to alleviate the growing pressure on the passenger air-transportation network. However, a full evaluation of realizable benefits is needed to determine how the design and operation of potential feeder-aircraft configurations impact on the feasibility of the overall concept. This paper presents an analysis of a cruiser–feeder concept, in which fuel is transferred between the feeder and the cruiser in an aerial-refueling configuration to extend range while reducing cruiser weight, compared against the effects of escalating existing technology levels while retaining the existing passenger levels. Up to 14% fuel-burn and 12% operating-cost savings can be achieved when compared to a similar technology-level aircraft concept without aerial refueling, representing up to 26% in fuel burn and 25% in total operating cost over the existing operational model at today’s standard fleet technology and performance. However, these potential savings are not uniformly distributed across the network, and the system is highly sensitive to the routes serviced, with reductions in revenue-generation potential observed across the network for aerial-refueling operations due to reductions in passenger revenue.
Resumo:
Dynamic economic load dispatch (DELD) is one of the most important steps in power system operation. Various optimisation algorithms for solving the problem have been developed; however, due to the non-convex characteristics and large dimensionality of the problem, it is necessary to explore new methods to further improve the dispatch results and minimise the costs. This article proposes a hybrid differential evolution (DE) algorithm, namely clonal selection-based differential evolution (CSDE), to solve the problem. CSDE is an artificial intelligence technique that can be applied to complex optimisation problems which are for example nonlinear, large scale, non-convex and discontinuous. This hybrid algorithm combines the clonal selection algorithm (CSA) as the local search technique to update the best individual in the population, which enhances the diversity of the solutions and prevents premature convergence in DE. Furthermore, we investigate four mutation operations which are used in CSA as the hyper-mutation operations. Finally, an efficient solution repair method is designed for DELD to satisfy the complicated equality and inequality constraints of the power system to guarantee the feasibility of the solutions. Two benchmark power systems are used to evaluate the performance of the proposed method. The experimental results show that the proposed CSDE/best/1 approach significantly outperforms nine other variants of CSDE and DE, as well as most other published methods, in terms of the quality of the solution and the convergence characteristics.