993 resultados para Territorial diversity
Resumo:
Single nucleotide polymorphisms (SNPs) are predicted to supersede microsatellites as the marker of choice for population genetic studies in the near future. To date, however, very few studies have directly compared both marker systems in natural populations, particularly in non-model organisms. In the present study, we compared the utility of SNPs and microsatellites for population genetic analysis of the red seaweed Chondrus crispus (Florideophyceae). Six SNP loci yielded very different patterns of intrapopulation genetic diversity compared to those obtained using seven moderately (mean 5.2 alleles) polymorphic microsatellite loci, although Bayesian clustering analysis gave largely congruent results between the two marker classes. A weak but significant pattern of isolation-by-distance was observed across scales from a few hundred metres to approximately 200?km using the combined SNP and microsatellite data set of 13 loci. Over larger scales, however, there was little correlation between genetic divergence and geographical distance. Our findings suggest that even a moderate number of SNPs is sufficient to determine patterns of genetic diversity across natural populations, and also highlight the fact that patterns of genetic variation in seaweeds arise through a complex interplay of short- and long-term natural processes, as well as anthropogenic influence.
Resumo:
It is now accepted that changes in the Earth’s climate are having a profound effect on the distributions of a wide variety of species. One aspect of these changes that has only recently received any attention, however, is their potential effect on levels of within-species genetic diversity. Theoretical, empirical and modelling studies suggest that the impact of trailing-edge population extirpation on range-wide intraspecific diversity will be most pronounced in species that harbour the majority of their genetic variation at low latitudes as a result of changes during the Quaternary glaciations. In the present review, I describe the historical factors that have determined current patterns of genetic variation across the ranges of Northern North Atlantic species, highlight the fact that the majority of these species do indeed harbour a disproportionate level of genetic diversity in rear-edge populations, and outline how combined species distribution modelling and genetic analyses can provide insights into the potential effects of climate change on their overall genetic diversity.
Resumo:
OBJECTIVES: The gastrointestinal microbiota is considered important in inflammatory bowel disease (IBD) pathogenesis. Discoveries from established disease cohorts report reduced bacterial diversity, changes in bacterial composition, and a protective role for Faecalibacterium prausnitzii in Crohn's disease (CD). The majority of studies to date are however potentially confounded by the effect of treatment and a reliance on established rather than de-novo disease.
METHODS: Microbial changes at diagnosis were examined by biopsying the colonic mucosa of 37 children: 25 with newly presenting, untreated IBD with active colitis (13 CD and 12 ulcerative colitis (UC)), and 12 pediatric controls with a macroscopically and microscopically normal colon. We utilized a dual-methodology approach with pyrosequencing (threshold >10,000 reads) and confirmatory real-time PCR (RT-PCR).
RESULTS: Threshold pyrosequencing output was obtained on 34 subjects (11 CD, 11 UC, 12 controls). No significant changes were noted at phylum level among the Bacteroidetes, Firmicutes, or Proteobacteria. A significant reduction in bacterial alpha-diversity was noted in CD vs. controls by three methods (Shannon, Simpson, and phylogenetic diversity) but not in UC vs. controls. An increase in Faecalibacterium was observed in CD compared with controls by pyrosequencing (mean 16.7% vs. 9.1% of reads, P = 0.02) and replicated by specific F. prausnitzii RT-PCR (36.0% vs. 19.0% of total bacteria, P = 0.02). No disease-specific clustering was evident on principal components analysis.
CONCLUSIONS: Our results offer a comprehensive examination of the IBD mucosal microbiota at diagnosis, unaffected by therapeutic confounders or changes over time. Our results challenge the current model of a protective role for F. prausnitzii in CD, suggesting a more dynamic role for this organism than previously described.
Resumo:
The human respiratory tract contains a highly adapted microbiota including commensal and opportunistic pathogens. Noncapsulated or nontypable Haemophilus influenzae (NTHi) is a human-restricted member of the normal airway microbiota in healthy carriers and an opportunistic pathogen in immunocompromised individuals. The duality of NTHi as a colonizer and as a symptomatic infectious agent is closely related to its adaptation to the host, which in turn greatly relies on the genetic plasticity of the bacterium and is facilitated by its condition as a natural competent. The variable genotype of NTHi accounts for its heterogeneous gene expression and variable phenotype, leading to differential host-pathogen interplay among isolates. Here we review our current knowledge of NTHi diversity in terms of genotype, gene expression, antigenic variation, and the phenotypes associated with colonization and pathogenesis. The potential benefits of NTHi diversity studies discussed herein include the unraveling of pathogenicity clues, the generation of tools to predict virulence from genomic data, and the exploitation of a unique natural system for the continuous monitoring of long-term bacterial evolution in human airways exposed to noxious agents. Finally, we highlight the challenge of monitoring both the pathogen and the host in longitudinal studies, and of applying comparative genomics to clarify the meaning of the vast NTHi genetic diversity and its translation to virulence phenotypes.
Resumo:
This study aimed to: (1) assess differences between two quantitative sampling methods of soil microarthropods (visual census vs. stone washing) in ice-free areas located along a latitudinal gradient (from 72 degrees 37'S to 74 degrees 42'S) in northern Victoria Land (Antarctica); (2) furnish preliminary results on the abundance and diversity of mites and springtails in the studied areas. Visual census yielded reliable density estimates for adult collembolans and larger prostigmatic mites but did not detect small species. The study updates the distribution of several mites, including the southernmost record of an Oribatida species at global scale. Species composition was correlated with latitude but the uneven abundance distribution and local high beta-diversity probably reflect habitat fragmentation and population isolation. Under this circumstance nested sampling design should be usefully employed. Priorities and suitable methods for studying terrestrial microarthropod communities in continental Antarctica are discussed.
Resumo:
Multiuser diversity (MUDiv) is one of the central concepts in multiuser (MU) systems. In particular, MUDiv allows for scheduling among users in order to eliminate the negative effects of unfavorable channel fading conditions of some users on the system performance. Scheduling, however, consumes energy (e.g., for making users' channel state information available to the scheduler). This extra usage of energy, which could potentially be used for data transmission, can be very wasteful, especially if the number of users is large. In this paper, we answer the question of how much MUDiv is required for energy limited MU systems. Focusing on uplink MU wireless systems, we develop MU scheduling algorithms which aim at maximizing the MUDiv gain. Toward this end, we introduce a new realistic energy model which accounts for scheduling energy and describes the distribution of the total energy between scheduling and data transmission stages. Using the fact that such energy distribution can be controlled by varying the number of active users, we optimize this number by either i) minimizing the overall system bit error rate (BER) for a fixed total energy of all users in the system or ii) minimizing the total energy of all users for fixed BER requirements. We find that for a fixed number of available users, the achievable MUDiv gain can be improved by activating only a subset of users. Using asymptotic analysis and numerical simulations, we show that our approach benefits from MUDiv gains higher than that achievable by generic greedy access algorithm, which is the optimal scheduling method for energy unlimited systems. © 2010 IEEE.
Resumo:
This study presents the findings of an empirical channel characterisation for an ultra-wideband off-body optic fibre-fed multiple-antenna array within an office and corridor environment. The results show that for received power experiments, the office and corridor were best modelled by lognormal and Rician distributions, respectively [for both line of sight (LOS) and non-LOS (NLOS) scenarios]. In the office, LOS measurements for t and tRMS were both described by the Normal distribution for all channels, whereas NLOS measurements for t and t were Nakagami and Weibull distributed, respectively. For the corridor measurements, LOS for t and t were either Nakagami or normally distributed for all channels, with NLOS measurements for t and t being Nakagami and normally distributed, respectively. This work also shows that achievable diversity gain was influenced by both mutual coupling and cross-correlation co-efficients. Although the best diversity gains were 1.8 dB for three-channel selective diversity combining, the authors present recommendations for improving these results. © The Institution of Engineering and Technology 2013.