958 resultados para Synthetic cathinones
Resumo:
Like ants and termites some species of stingless bees (Meliponini), which are very important pollinators in the tropics, use pheromone trails to communicate the location of a food source. We present data on the communicative role of mandibular gland secretions of Meliponini that resolve a recent controversy about their importance in the laying of such trails. Volatile constituents of the mandibular glands have been erroneously thought both to elicit aggressive/defensive behaviour and to signal food source location. We studied Trigona spinipes and Scaptotrigona aff. depilis (`postica`), two sympatric species to which this hypothesis was applied. Using extracts of carefully dissected glands instead of crude cephalic extracts we analysed the substances contained in the mandibular glands of worker bees. Major components of the extracts were 2-heptanol (both species), nonanal (T. spinipes), benzaldehyde and 2-tridecanone (S. aff. depilis). The effect of mandibular gland extracts and of individual components thereof on the behaviour of worker bees near their nest and at highly profitable food sources was consistent. Independent of the amount of mandibular gland extract applied, the bees overwhelmingly reacted with defensive behaviour and were never attracted to feeders scented with mandibular gland extract or any of the synthetic chemicals tested. Both bee species are capable of using mandibular gland secretions for intra-and interspecific communication of defence and aggression and share 2-heptanol as a major pheromone compound. While confirming the role of the mandibular glands in nest defence, our experiments provide strong evidence against their role in food source signalling.
Resumo:
This work reports the synthesis, characterization, and evaluation of new porphyrins tailored to become biodiesel fluorescent markers. The compounds were obtained by the synthetic modification of the commercially available porphyrin 5,10,15,20-meso-tetrakis(pentafluorophenyl)porphyrin (TPPF(20)) using ethanol and hexadecan-1-ol (cetylic alcohol) as nucleophilic reagents. The stability of the marked biodiesel fuel solutions was investigated every 15 days for a total period of 3 months, and under different storage temperature and light exposure condition, simulating the conventional stock conditions. The influence of the different substituents of the porphyrins on the fluorescence properties of the biodiesel fuel markers was also assessed. The resulting porphyrins were highly soluble in biodiesel fuel and displayed strong fluorescence characterized by two strong emission bands. The fluorescent markers did not affect the biodiesel physical properties and were stable in storage conditions for at least 3 months at a concentration of 4 ppm. The best storage condition was found to be absence of light and 6 degrees C; the limit of detection by photoluminescence technique had magnitude of 10(-13) mol L(-1). The synthesized porphyrins were characterized by nuclear magnetic resonance ((1)H-NMR and (19)F-NMR), mass spectrometry (HRMS), ultraviolet visible absorption spectroscopy, and photoluminescence spectroscopy. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A modification of the Pechini method was applied to obtain luminescent rare earth orthophosphates. The developed synthetic route is based on the ability of the tripolyphosphate anion (P3O105-) to act both as a complexing agent and as an orthophosphate precursor. Heating of aqueous solutions containing RE3+, Eu3+, P3O105-, citric acid, and ethylene glycol led to polymeric resins. The ignition of these resins at different temperatures yielded luminescent orthophosphates. The produced nanosized phosphors (YPO4:Eu3+, (Y,Gd)PO4:Eu3+, and LaPO4:Eu3+) were analyzed by infrared and luminescence spectroscopies, X-ray diffractometry, and scanning electron microscopy.
Resumo:
Hydroalumination of thioacetylenes using DIBAL-H and lithium di-(isobutyl)-n-(butyl)-aluminate hydride (Zweifel`s reagent), followed by addition of water, furnished exclusively the (Z)- and (E)-vinyl sulfides, respectively. The regio- and stereochemistry of the intermediates generated, (Z)- and (E)-phenylthio vinyl alanates, were determined by capture with iodine, which afforded the corresponding (E)- and (Z)-1-iodo-1-phenylthio-2-organoyl ethenes. Reactions of the (E)-iodo(thio)ketene acetals with n-BuLi followed by addition of hexanal afforded the (Z)-phenylthio allylic alcohol, while the (Z)-iodo(thio)ketene acetals under similar reactions conditions gave the (E)-phenylthio allylic alcohol exclusively.
Resumo:
This article addresses the interactions of the synthetic antimicrobial peptide dermaseptin 01 (GLWSTIKQKGKEAAIAAA-KAAGQAALGAL-NH(2), DS 01) with phospholipid (PL) monolayers comprising (i) a lipid-rich extract of Leishmania amazonensis (LRE-La), (ii) zwitterionic PL (dipalmitoylphosphatidylcholine, DPPC), and (iii) negatively charged PL (dipalmitoylphosphatidylglycerol, DPPG). The degree of interaction of DS 01 with the different biomembrane models was quantified from equilibrium and dynamic liquid-air interface parameters. At low peptide concentrations, interactions between DS 01 and zwitterionic PL, as well as with the LRE-La monolayers were very weak, whereas with negatively charged PLs the interactions were stronger. For peptide concentrations above 1 mu g/ml, a considerable expansion of negatively charged monolayers occurred. In the case of DPPC, it was possible to return to the original lipid area in the condensed phase, suggesting that the peptide was expelled from the monolayer. However, in the case of DPPG, the average area per lipid molecule in the presence of DS 01 was higher than pure PLs even at high surface pressures, suggesting that at least part of DS 01 remained incorporated in the monolayer. For the LRE-La monolayers, DS 01 also remained in the monolayer. This is the first report on the antiparasitic activity of AMPs using Langmuir monolayers of a natural lipid extract from L. amazonensis. Copyright (C) 2011 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
New organic/inorganic (O/I) hybrid assemblies based on Layered Double Hydroxide (LDH) with polyamide amine dendrimer (PAMAM, generation -0.5 and generation +0.5) were prepared by two different routes using either the direct coprecipitation at constant pH or the anion exchange procedure in double surfactant S(+)S(-) phases. The obtained materials were characterized by means of powder X-ray diffraction, thermal gravimetric analysis associated with mass spectrometry, and Fourier-transform infrared spectroscopy. X-ray powder diffraction pattern of the O/I LDH assembly exhibit characteristic profiles of LDH-based materials with basal spacing depending on the nature of the dendrimer. Indeed, for both synthetic procedures, interleaved PAMAM -0.5 gives rise to an interlayer space in agreement with a perpendicular molecular arrangement against the layer of the host structure. For PAMAM+0.5, considering its spherical dimension, a much smaller basal spacing was observed. This observation was interpreted as shrinkage of the molecule to accommodate the interlayer LDH gap, which was rendered possible by the bond angle twisting within PAMAM-0.5. FTIR spectra confirm the presence of both moieties inside both Zn(2)Al/PAMAM G-0.5 and Zn(2)Al/PAMAM G+0.5 assemblies. Finally, thermal analysis associated with mass spectrometry confirm this composition, and in situ temperature XRD data reveal that the highly constrained arrangement for the generation +0.5 is not accompanied by a gain in thermal structural stability; in fact, the assembly prepared from PAMAM -0.5 is more stable. Both O/I PAMAM LDH assemblies constitute well-defined materials which are candidate for catalytic applications.
Biomimetic Oxidation of Piperine and Piplartine Catalyzed by Iron(III) and Manganese(III) Porphyrins
Resumo:
Synthetic metalloporphyrins, in the presence of monooxygen donors, are known to mimetize various reactions of cytochrome P450 enzymes systems in the oxidation of drugs and natural products. The oxidation of piperine and piplartine by iodosylbenzene using iron(III) and manganese(III) porphyrins yielded mono- and dihydroxylated products, respectively. Piplartine showed to be a more reactive substrate towards the catalysts tested. The structures of the oxidation products were proposed based on electrospray ionization tandem mass spectrometry.
Resumo:
Colonial spiders evolved a differential prey-capture behaviour in concert with their venom chemistry, which may be a source of novel drugs. Some highly active tetrahydro-beta-carboline (TH beta C) toxins were recently isolated from the venom of the colonial spider Parawixia bistriata; the spiders use these toxins as part of their chemical arsenal to kill and/or paralyze preys. The major TH beta C compound isolated from this venom was identified as 6-hydroxytrypargine, also known as PwTX-I. Most natural compounds of animal origin occur in low abundance, and the natural abundance of PwTX-I is insufficient for complete functional characterization. Thus, PwTx-I was synthesized using a Pictet-Spengler condensation strategy, and the stereoisomers of the synthetic toxin were separated by chiral chromatography. The fraction of venom containing a mixture of three natural TH beta C toxins and enantiomers of PwTx-I were analyzed for inhibition of monoamine oxidase (MAO)-A and -B and for toxicity to insects. We reveal that the mixture of the natural TH beta C toxins, as well as the enantiomers of PwTx-I, were non-competitive inhibitors of MAO-A and MAO-B and caused potent paralysis of honeybees. The (-)-PwTX-I enantiomer is 2-fold more potent than the (+)-PwTX-I enantiomer in the assays performed. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A new, short total synthesis of dihydroactinidiolide 1 is described using selenium carbenium ion-promoted carbon-carbon bond formation as the key step. Our synthetic strategy starts with a lactonization reaction between 1,3,3-trimethylcyclohexene 13 and alpha-chloro-alpha-phenylseleno ethyl acetate 14, affording the key intermediate, alpha-phenylseleno-gamma-butyro lactone 15, which reacted via a selenoxide elimination to the target compound 1. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Proteins incorporated into phospholipid Langmuir-Blodgett (LB) films are a good model system for biomembranes and enzyme immobilization studies. The specific fluidity of biomembranes, an important requisite for enzymatic activity, is naturally controlled by varying phospholipid compositions. In a model system, instead, LB film fluidity may be varied by covering the top layer with different substances able to interact simultaneously with the phospholipid and the protein to be immobilized. In this study, we immobilized a carbohydrate rich Neurospora crassa alkaline phosphatase (NCAP) in monolayers of the sodium salt of dihexadecylphosphoric acid (DHP), a synthetic phospholipid that provides very condensed Langmuir films. The binding of NCAP to DHP Langmuir-Blodgett (LB) films was mediated by the anionic polysaccharide iota-carrageenan (iota-car). Combining results from surface isotherms and the quartz crystal microbalance technique, we concluded that the polysaccharide was essential to promote the interaction between DHP and NCAP and also to increase the fluidity of the film. An estimate of DHP:iota-car ratio within the film also revealed that the polysaccharide binds to DHP LB film in an extended conformation. Furthermore, the investigation of the polysaccharide conformation at molecular level, using sum-frequency vibrational spectroscopy (SFG), indicated a preferential conformation of the carrageenan molecules with the sulfate groups oriented toward the phospholipid monolayer, and both the hydroxyl and ether groups interacting preferentially with the protein. These results demonstrate how interfacial electric fields can reorient and induce conformational changes in macromolecules, which may significantly affect intermolecular interactions at interfaces. This detailed knowledge of the interaction mechanism between the enzyme and the LB film is relevant to design strategies for enzyme immobilization when orientation and fluidity properties of the film provided by the matrix are important to improve enzymatic activity.
Resumo:
The pendent-arm macrocyclic hexaamine trans-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine (L) may coordinate in tetra-, penta- or hexadentate modes, depending on the metal ion and the synthetic procedure. We report here the crystal structures of two pseudo-octahedral cobalt(III) complexes of L, namely sodium trans-cyano(trans-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine)cobalt(III) triperchlorate, Na[Co(CN)(C13H30N6)](ClO4)(3) or Na{trans-[CoL(CN)]}(ClO4)(3), (I), where L is coordinated as a pentadentate ligand, and trans-dicyano(trans-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine) cobalt (III) trans-dicyano (trans-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diaminium)cobalt(III) tetraperchlorate tetrahydrate, [Co(CN)(2)(Cl4H32N6)][Co(CN)(2)(Cl4H30N6)](ClO4)(4)•-4H(2)O or trans-[CoL(CN)(2)]trans-[Co(H2L)(CN)(2)] (ClO4)(4)•-4H(2)O, (II), where the ligand binds in a tetradentate mode, with the remaining coordination sites being filled by C-bound cyano ligands. In (I), the secondary amine Co-N bond lengths lie within the range 1.944 (3)-1.969 (3) &ANGS;, while the trans influence of the cyano ligand lengthens the Co-N bond length of the coordinated primary amine [Co-N = 1.986 (3) &ANGS;]. The Co-CN bond length is 1.899 (3) &ANGS;. The complex cations in (11) are each located on centres of symmetry. The Co-N bond lengths in both cations are somewhat longer than in (I) and span a narrow range [1.972 (3)-1.982 (3) &ANGS;]. The two independent Co-CN bond lengths are similar [1.918 (4) and 1.926 (4) &ANGS;] but significantly longer than in the structure of (1), again a consequence of the trans influence of each cyano ligand.
Resumo:
Magnetic field effects on the conductivity of different types of organic devices: undoped and dye doped aluminium (III) 8-hydroxyquinoline (Alq(3))-based organic light emitting diodes (OLEDs), electron-only Alq(3)-based diodes, and a hole-only N,N`-diphenyl-N,N`-bis(1-naphthyl)1,1`-biphenyl-4,4`-diamine (alpha-NPD)-based diode were studied at room temperature. Only negative magnetoresistance (MR) was observed for the Alq(3)-based devices. The addition of a rubrene dye in Alq(3)-based OLEDs quenches the MR by a factor of 5. The alpha-NPD hole-only device showed only positive MR. Our results are discussed with respect to the actual models for MR in organic semiconductors. Our results are in good agreement with the bipolaron model. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Context: Kisspeptin, encoded by the KISS1 gene, is a key stimulatory factor of GnRH secretion and puberty onset. Inactivating mutations of its receptor (KISS1R) cause isolated hypogonadotropic hypogonadism (IHH). A unique KISS1R-activating mutation was described in central precocious puberty (CPP). Objective: Our objective was to investigate KISS1 mutations in patients with idiopathic CPP and normosmic IHH. Patients: Eighty-three children with CPP (77 girls) and 61 patients with IHH (40 men) were studied. The control group consisted of 200 individuals with normal pubertal development. Methods: The promoter region and the three exons of KISS1 were amplified and sequenced. Cells expressing KISS1R were stimulated with synthetic human wild-type or mutant kisspeptin-54 (kp54), and inositol phosphate accumulation was measured. In a second set of experiments, kp54 was preincubated in human serum before stimulation of the cells. Results: Two novel KISS1 missense mutations, p.P74S and p.H90D, were identified in three unrelated children with idiopathic CPP. Both mutations were absent in 400 control alleles. The p.P74S mutation was identified in the heterozygous state in a boy who developed CPP at 1 yr of age. The p.H90D mutation was identified in the homozygous state in two unrelated girls with CPP. In vitro studies revealed that the capacity of the P74S and H90D mutants to stimulate IP production was similar to the wild type. After preincubation of wild-type and mutant kp54 in human serum, the capacity to stimulate signal transduction was significantly greater for P74S compared with the wild type, suggesting that the p.P74S variant is more stable. Only polymorphisms were found in the IHH group. Conclusion: Two KISS1 mutations were identified in unrelated patients with idiopathic CPP. The p.P74S variant was associated with higher kisspeptin resistance to degradation in comparison with the wild type, suggesting a role for this mutation in the precocious puberty phenotype. (J Clin Endocrinol Metab 95: 2276-2280, 2010)
Resumo:
Pollution by polycyclic aromatic hydrocarbons(PAHs) is widespread due to unsuitable disposal of industrial waste. They are mostly defined as priority pollutants by environmental protection authorities worldwide. Phenanthrene, a typical PAH, was selected as the target in this paper. The PAH-degrading mixed culture, named ZM, was collected from a petroleum contaminated river bed. This culture was injected into phenanthrene solutions at different concentrations to quantify the biodegradation process. Results show near-complete removal of phenanthrene in three days of biodegradation if the initial phenanthrene concentration is low. When the initial concentration is high, the removal rate is increased but 20%-40% of the phenanthrene remains at the end of the experiment. The biomass shows a peak on the third day due to the combined effects of microbial growth and decay. Another peak is evident for cases with a high initial concentration, possibly due to production of an intermediate metabolite. The pH generally decreased during biodegradation because of the production of organic acid. Two phenomenological models were designed to simulate the phenanthrene biodegradation and biomass growth. A relatively simple model that does not consider the intermediate metabolite and its inhibition of phenanthrene biodegradation cannot fit the observed data. A modified Monod model that considered an intermediate metabolite (organic acid) and its inhibiting reversal effect reasonably depicts the experimental results.
Resumo:
BACKGROUND: Retention of airway secretions is a common and serious problem in ventilated patients. Treating or avoiding secretion retention with mucus thinning, patient-positioning, airway suctioning, or chest or airway vibration or percussion may provide short-term benefit. METHODS: In a series of laboratory experiments with a test-lung system we examined the role of ventilator settings and lung-impedance on secretion retention and expulsion. Known quantities of a synthetic dye-stained mucus simulant with clinically relevant properties were injected into a transparent tube the diameter of an adult trachea and exposed to various mechanical-ventilation conditions. Mucus-simulant movement was measured with a photodensitometric technique and examined with image-analysis software. We tested 2 mucus-simulant viscosities and various peak flows, inspiratory/ expiratory flow ratios, intrinsic positive end-expiratory pressures, ventilation waveforms, and impedance values. RESULTS: Ventilator settings that produced flow bias had a major effect on mucus movement. Expiratory How bias associated with intrinsic positive end-expiratory pressure generated by elevated minute ventilation moved mucus toward the airway opening, whereas intrinsic positive end-expiratory pressure generated by increased airway resistance moved the mucus toward the lungs. Inter-lung transfer of mucus simulant occurred rapidly across the ""carinal divider"" between interconnected test lungs set to radically different compliances; the mucus moved out of the low-compliance lung and into the high-compliance lung. CONCLUSIONS: The movement of mucus simulant was influenced by the ventilation pattern and lung impedance. Flow bias obtained with ventilator settings may clear or embed mucus during mechanical ventilation.