928 resultados para Suppressor of cytokine signaling proteins
Resumo:
The plastic brain responses generated by the training with acrobatic exercise (AE) and with treadmill exercise (TE) may be different. We evaluated the protein expression of synapsin I (SYS), synaptophysin (SYP), microtubule-associated protein 2 (MAP2) and neurofilaments (NF) by immunohistochemistry and Western blotting in the motor cortex, striatum and cerebellum of rats subjected to TE and AE. Young adult male Wistar rats were divided into 3 groups: sedentary (Sed) (n=15), TE (n=20) and AE (n=20). The rats were trained 3 days/week for 4 weeks on a treadmill at 0.6 km/h, 40 min/day (TE), or moved through a circuit of obstacles 5 times/day (AE). The rats from the TE group exhibited a significant increase of SYS and SYP in the motor cortex, of NF68, SYS and SYP in the striatum, and of MAP2, NF and SYS in the cerebellum, whereas NF was decreased in the motor cortex and the molecular layer of the cerebellar cortex. On the other hand, the rats from the AE group showed a significant increase of MAP2 and SYP in the motor cortex, of all four proteins in the striatum, and of SYS in the cerebellum. In conclusion, AE induced changes in the expression of synaptic and structural proteins mainly in the motor cortex and striatum, which may underlie part of the learning of complex motor tasks. TE, on the other hand, promoted more robust changes of structural proteins in all three regions, especially in the cerebellum, which is involved in learned and automatic tasks. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Schistosoma mansoni is responsible for schistosomiasis, a parasitic disease that affects 200 million people worldwide. Molecular mechanisms of host-parasite interaction are complex and involve a crosstalk between host signals and parasite receptors. TGF-beta signaling pathway has been shown to play an important role in S. mansoni development and embryogenesis. In particular human (h) TGF-beta has been shown to bind to a S. mansoni receptor, transduce a signal that regulates the expression of a schistosome target gene. Here we describe 381 parasite genes whose expression levels are affected by in vitro treatment with hTGF-beta. Among these differentially expressed genes we highlight genes related to morphology, development and cell cycle that could be players of cytokine effects on the parasite. We confirm by qPCR the expression changes detected with microarrays for 5 out of 7 selected genes. We also highlight a set of non-coding RNAs transcribed from the same loci of protein-coding genes that are differentially expressed upon hTCF-beta treatment. These datasets offer potential targets to be explored in order to understand the molecular mechanisms behind the possible role of hTGF-beta effects on parasite biology. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Background: The unicellular parasite Trypanosoma cruzi is the causative agent of Chagas disease in humans. Adherence of the infective stage to elements of the extracellular matrix (ECM), as laminin and fibronectin, is an essential step in host cell invasion. Although members of the gp85/TS, as Tc85, were identified as laminin and fibronectin ligands, the signaling events triggered on the parasite upon binding to these molecules are largely unexplored. Methodology/Principal Findings: Viable infective parasites were incubated with laminin, fibronectin or bovine serum albumin for different periods of time and the proteins were separated by bidimensional gels. The phosphoproteins were envisaged by specific staining and the spots showing phosphorylation levels significantly different from the control were excised and identified by MS/MS. The results of interest were confirmed by immunoblotting or immunoprecipitation and the localization of proteins in the parasite was determined by immunofluorescence. Using a host cell-free system, our data indicate that the phosphorylation contents of T. cruzi proteins encompassing different cellular functions are modified upon incubation of the parasite with fibronectin or laminin. Conclusions/Significance: Herein it is shown, for the first time, that paraflagellar rod proteins and alpha-tubulin, major structural elements of the parasite cytoskeleton, are predominantly dephosphorylated during the process, probably involving the ERK1/2 pathway. It is well established that T. cruzi binds to ECM elements during the cell infection process. The fact that laminin and fibronectin induce predominantly dephosphorylation of the main cytoskeletal proteins of the parasite suggests a possible correlation between cytoskeletal modifications and the ability of the parasite to internalize into host cells.
Resumo:
Myofibril proteins have excellent filmogenic properties. The objective of this article was to study the effect of the thermal treatment, of the pH and of the plasticizer concentration (Cp) of the filmogenic solution (FS), using over some physical properties of edible films, using a surface and response methodology (SRM). Films were made of lyophilized myofibril proteins (LMP) extracted from bovine muscle, employing the technique of solubility obtained from diluted saline solutions. The films were elaborated from FS containing 1 g of LMP/100g of FS and from Cp of 50 g to 79 g of glycerin/100 g of LMP. The LMP was dispersed in water under moderate agitation, and the pH was kept at 2.5-3.5 with the use of acetic acid. The FS were submitted to thermal treatment at different temperatures for 45 minutes. Films were dried in ventilated oven at 37 degrees C/18hr, conditioned at 75% of relative humidity at 25 degrees C/48 hr before analysis of: mechanical properties by puncture test; apparent opacity by spectrophotometer; solubility by immersion in water; and water vapor permeability by the gravimetric method. In general, films showed good appearance, translucent, easily handled and touchable, except for the films formed with pH 2.5 and at a low temperature (35 degrees C), with a medium thickness of 0.400 +/- 0.005 mm. The pH of the FS significantly affected all the physical properties under study. The temperature of the thermal treatment of the FS greatly affected the force at the rupture, solubility and water vapor permeability. This treatment can promote intermolecular interactions through the formation of disulphide bonds; however a very intense treatment can reverse this effect by irreversible structural alterations in the proteins. The glycerol concentration affected considerably all the properties under study, with the exception of the apparent opacity. Plasticizer increases the mobility of macromolecules with consequences in all physical properties.
Resumo:
Adenosine deaminases acting on RNA (ADARs) catalyze the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) and thereby potentially alter the information content and structure of cellular RNAs. Notably, although the overwhelming majority of such editing events occur in transcripts derived from Alu repeat elements, the biological function of non-coding RNA editing remains uncertain. Here, we show that mutations in ADAR1 (also known as ADAR) cause the autoimmune disorder Aicardi-Goutieres syndrome (AGS). As in Adar1-null mice, the human disease state is associated with upregulation of interferon-stimulated genes, indicating a possible role for ADAR1 as a suppressor of type I interferon signaling. Considering recent insights derived from the study of other AGS-related proteins, we speculate that ADAR1 may limit the cytoplasmic accumulation of the dsRNA generated from genomic repetitive elements.
Resumo:
Macrophage ingestion of the yeast Candida albicans requires its recognition by multiple receptors and the activation of diverse signaling programs. Synthesis of the lipid mediator prostaglandin E-2 (PGE(2)) and generation of cyclic adenosine monophosphate (cAMP) also accompany this process. Here, we characterized the mechanisms underlying PGE(2)-mediated inhibition of phagocytosis and filamentous actin (F-actin) polymerization in response to ingestion of C. albicans by alveolar macrophages. PGE(2) suppressed phagocytosis and F-actin formation through the PGE(2) receptors EP2 and EP4, cAMP, and activation of types I and II protein kinase A. Dephosphorylation and activation of the actin depolymerizing factor cofilin-1 were necessary for these inhibitory effects of PGE(2). PGE(2)-dependent activation of cofilin-1 was mediated by the protein phosphatase activity of PTEN (phosphatase and tensin homolog deleted on chromosome 10), with which it directly associated. Because enhanced production of PGE(2) accompanies many immunosuppressed states, the PTEN-dependent pathway described here may contribute to impaired antifungal defenses.
Resumo:
Background: Epsilon-protein kinase C (epsilon PKC) protects the heart from ischemic injury. However, the mechanism(s) of epsilon PKC cardioprotection is still unclear. Identification of the epsilon PKC targets may aid in elucidating the epsilon PKC-mediated cardioprotective mechanisms. Previous studies, using epsilon PKC transgenic mice and difference in gel electrophoresis, identified proteins involved in glucose metabolism, the expression of which was modified by epsilon PKC. Those studies were accompanied by metabolomic analysis, suggesting that increased glucose oxidation may be responsible for the cardioprotective effect of epsilon PKC. Whether these epsilon PKC-mediated alterations were because of differences in protein expression or phosphorylation was not determined. Methods and Results: In the present study, we used an epsilon PKC -specific activator peptide, psi epsilon RACK, combined with phosphoproteomics, to find epsilon PKC targets, and identified that the proteins whose phosphorylation was altered by selective activation of epsilon PKC were mostly mitochondrial proteins. Analysis of the mitochondrial phosphoproteome led to the identification of 55 spots, corresponding to 37 individual proteins, exclusively phosphorylated, in the presence of psi epsilon RACK. The majority of the proteins identified were involved in glucose and lipid metabolism, components of the respiratory chain as well as mitochondrial heat shock proteins. Conclusions: The protective effect of epsilon PKC during ischemia involves phosphorylation of several mitochondrial proteins involved in glucose and lipid metabolism and oxidative phosphorylation. Regulation of these metabolic pathways by epsilon PKC phosphorylation may lead to epsilon PKC-mediated cardioprotection induced by psi epsilon RACK. (Circ J 2012; 76: 1476-1485)
Resumo:
Background: Metastasis is the main factor responsible for death in breast cancer patients. Matrix metalloproteinases (MMPs) and their inhibitors, known as tissue inhibitors of MMPs (TIMPs), and the membrane-associated MMP inhibitor (RECK), are essential for the metastatic process. We have previously shown a positive correlation between MMPs and their inhibitors expression during breast cancer progression; however, the molecular mechanisms underlying this coordinate regulation remain unknown. In this report, we investigated whether TGF-beta 1 could be a common regulator for MMPs, TIMPs and RECK in human breast cancer cell models. Methods: The mRNA expression levels of TGF-beta isoforms and their receptors were analyzed by qRT-PCR in a panel of five human breast cancer cell lines displaying different degrees of invasiveness and metastatic potential. The highly invasive MDA-MB-231 cell line was treated with different concentrations of recombinant TGF-beta 1 and also with pharmacological inhibitors of p38 MAPK and ERK1/2. The migratory and invasive potential of these treated cells were examined in vitro by transwell assays. Results: In general, TGF-beta 2, T beta RI and T beta RII are over-expressed in more aggressive cells, except for T beta RI, which was also highly expressed in ZR-75-1 cells. In addition, TGF-beta 1-treated MDA-MB-231 cells presented significantly increased mRNA expression of MMP-2, MMP-9, MMP-14, TIMP-2 and RECK. TGF-beta 1 also increased TIMP-2, MMP-2 and MMP-9 protein levels but downregulated RECK expression. Furthermore, we analyzed the involvement of p38 MAPK and ERK1/2, representing two well established Smad-independent pathways, in the proposed mechanism. Inhibition of p38MAPK blocked TGF-beta 1-increased mRNA expression of all MMPs and MMP inhibitors analyzed, and prevented TGF-beta 1 upregulation of TIMP-2 and MMP-2 proteins. Moreover, ERK1/2 inhibition increased RECK and prevented the TGF-beta 1 induction of pro-MMP-9 and TIMP-2 proteins. TGF-beta 1-enhanced migration and invasion capacities were blocked by p38MAPK, ERK1/2 and MMP inhibitors. Conclusion: Altogether, our results support that TGF-beta 1 modulates the mRNA and protein levels of MMPs (MMP-2 and MMP-9) as much as their inhibitors (TIMP-2 and RECK). Therefore, this cytokine plays a crucial role in breast cancer progression by modulating key elements of ECM homeostasis control. Thus, although the complexity of this signaling network, TGF-beta 1 still remains a promising target for breast cancer treatment.
Resumo:
Abstract Background In the alpha subclass of proteobacteria iron homeostasis is controlled by diverse iron responsive regulators. Caulobacter crescentus, an important freshwater α-proteobacterium, uses the ferric uptake repressor (Fur) for such purpose. However, the impact of the iron availability on the C. crescentus transcriptome and an overall perspective of the regulatory networks involved remain unknown. Results In this work we report the identification of iron-responsive and Fur-regulated genes in C. crescentus using microarray-based global transcriptional analyses. We identified 42 genes that were strongly upregulated both by mutation of fur and by iron limitation condition. Among them, there are genes involved in iron uptake (four TonB-dependent receptor gene clusters, and feoAB), riboflavin biosynthesis and genes encoding hypothetical proteins. Most of these genes are associated with predicted Fur binding sites, implicating them as direct targets of Fur-mediated repression. These data were validated by β-galactosidase and EMSA assays for two operons encoding putative transporters. The role of Fur as a positive regulator is also evident, given that 27 genes were downregulated both by mutation of fur and under low-iron condition. As expected, this group includes many genes involved in energy metabolism, mostly iron-using enzymes. Surprisingly, included in this group are also TonB-dependent receptors genes and the genes fixK, fixT and ftrB encoding an oxygen signaling network required for growth during hypoxia. Bioinformatics analyses suggest that positive regulation by Fur is mainly indirect. In addition to the Fur modulon, iron limitation altered expression of 113 more genes, including induction of genes involved in Fe-S cluster assembly, oxidative stress and heat shock response, as well as repression of genes implicated in amino acid metabolism, chemotaxis and motility. Conclusions Using a global transcriptional approach, we determined the C. crescentus iron stimulon. Many but not all of iron responsive genes were directly or indirectly controlled by Fur. The iron limitation stimulon overlaps with other regulatory systems, such as the RpoH and FixK regulons. Altogether, our results showed that adaptation of C. crescentus to iron limitation not only involves increasing the transcription of iron-acquisition systems and decreasing the production of iron-using proteins, but also includes novel genes and regulatory mechanisms.
Resumo:
Abstract Background Metastasis is the main factor responsible for death in breast cancer patients. Matrix metalloproteinases (MMPs) and their inhibitors, known as tissue inhibitors of MMPs (TIMPs), and the membrane-associated MMP inhibitor (RECK), are essential for the metastatic process. We have previously shown a positive correlation between MMPs and their inhibitors expression during breast cancer progression; however, the molecular mechanisms underlying this coordinate regulation remain unknown. In this report, we investigated whether TGF-β1 could be a common regulator for MMPs, TIMPs and RECK in human breast cancer cell models. Methods The mRNA expression levels of TGF-β isoforms and their receptors were analyzed by qRT-PCR in a panel of five human breast cancer cell lines displaying different degrees of invasiveness and metastatic potential. The highly invasive MDA-MB-231 cell line was treated with different concentrations of recombinant TGF-β1 and also with pharmacological inhibitors of p38 MAPK and ERK1/2. The migratory and invasive potential of these treated cells were examined in vitro by transwell assays. Results In general, TGF-β2, TβRI and TβRII are over-expressed in more aggressive cells, except for TβRI, which was also highly expressed in ZR-75-1 cells. In addition, TGF-β1-treated MDA-MB-231 cells presented significantly increased mRNA expression of MMP-2, MMP-9, MMP-14, TIMP-2 and RECK. TGF-β1 also increased TIMP-2, MMP-2 and MMP-9 protein levels but downregulated RECK expression. Furthermore, we analyzed the involvement of p38 MAPK and ERK1/2, representing two well established Smad-independent pathways, in the proposed mechanism. Inhibition of p38MAPK blocked TGF-β1-increased mRNA expression of all MMPs and MMP inhibitors analyzed, and prevented TGF-β1 upregulation of TIMP-2 and MMP-2 proteins. Moreover, ERK1/2 inhibition increased RECK and prevented the TGF-β1 induction of pro-MMP-9 and TIMP-2 proteins. TGF-β1-enhanced migration and invasion capacities were blocked by p38MAPK, ERK1/2 and MMP inhibitors. Conclusion Altogether, our results support that TGF-β1 modulates the mRNA and protein levels of MMPs (MMP-2 and MMP-9) as much as their inhibitors (TIMP-2 and RECK). Therefore, this cytokine plays a crucial role in breast cancer progression by modulating key elements of ECM homeostasis control. Thus, although the complexity of this signaling network, TGF-β1 still remains a promising target for breast cancer treatment.
Resumo:
Gastric cancer is the fourth most common cancer and the second leading cause of cancer-related deaths worldwide. Galectins form a family of β-galactosides binding proteins that recognize a variety of glycan-containing proteins at the cell surface and are overexpressed in various tumors, including gastric cancer. Galectins overexpression as well as changes in their subcellular distribution has been associated with gastric cancer progression and poor prognosis. It is not well understood, however, how the interaction between galectins and glycosylated receptors modulates tumor development and growth. Since Notch receptors and ligands contain glycan structures known to bind galectins, we aim to demonstrate that galectins expression in the tumor microenvironment may interfere with Notch signaling activation during tumor development and progression. Materials and methods Immunoprecipitation procedures with gastric cancer cell line AGS (ATCC CRL-1739) and MKN45 (ACC 409) were used to test for association between galectin-1/-3 and Notch-1 receptor. Furthermore, we transfected AGS cell line with siRNA against galectin-1/-3 or scramble using standard protocols (IDT DNA technologies), stimulate them with immobilized human recombinant delta-4 or Jagged-1 and assessed Notch-1 receptor activation. Results Galectin-1 and -3 interact with Notch-1 receptor and differentially modulate Notch signaling pathway upon activation by Delta/Jagged ligands. Galectin-1 knockdown alters Notch-1 activation induced by Delta-4 whereas galectin-3 knockdown alters jagged-1-mediated Notch-1 activation. Furthermore, we found that exogenously added galectin-3 can enhance Notch-1 activation by Jagged-1. Conclusion Our results suggest that galectin-1 and -3 interact with Notch-1 receptor and differentially modulate Notch signaling activation induced by Jagged-1 and Delta-4.
Resumo:
Abstract Background Bone fractures and loss represent significant costs for the public health system and often affect the patients quality of life, therefore, understanding the molecular basis for bone regeneration is essential. Cytokines, such as IL-6, IL-10 and TNFα, secreted by inflammatory cells at the lesion site, at the very beginning of the repair process, act as chemotactic factors for mesenchymal stem cells, which proliferate and differentiate into osteoblasts through the autocrine and paracrine action of bone morphogenetic proteins (BMPs), mainly BMP-2. Although it is known that BMP-2 binds to ActRI/BMPR and activates the SMAD 1/5/8 downstream effectors, little is known about the intracellular mechanisms participating in osteoblastic differentiation. We assessed differences in the phosphorylation status of different cellular proteins upon BMP-2 osteogenic induction of isolated murine skin mesenchymal stem cells using Triplex Stable Isotope Dimethyl Labeling coupled with LC/MS. Results From 150 μg of starting material, 2,264 proteins were identified and quantified at five different time points, 235 of which are differentially phosphorylated. Kinase motif analysis showed that several substrates display phosphorylation sites for Casein Kinase, p38, CDK and JNK. Gene ontology analysis showed an increase in biological processes related with signaling and differentiation at early time points after BMP2 induction. Moreover, proteins involved in cytoskeleton rearrangement, Wnt and Ras pathways were found to be differentially phosphorylated during all timepoints studied. Conclusions Taken together, these data, allow new insights on the intracellular substrates which are phosphorylated early on during differentiation to BMP2-driven osteoblastic differentiation of skin-derived mesenchymal stem cells.
Resumo:
BACKGROUND: In the alpha subclass of proteobacteria iron homeostasis is controlled by diverse iron responsive regulators. Caulobacter crescentus, an important freshwater α-proteobacterium, uses the ferric uptake repressor (Fur) for such purpose. However, the impact of the iron availability on the C. crescentus transcriptome and an overall perspective of the regulatory networks involved remain unknown. RESULTS: In this work we report the identification of iron-responsive and Fur-regulated genes in C. crescentus using microarray-based global transcriptional analyses. We identified 42 genes that were strongly upregulated both by mutation of fur and by iron limitation condition. Among them, there are genes involved in iron uptake (four TonB-dependent receptor gene clusters, and feoAB), riboflavin biosynthesis and genes encoding hypothetical proteins. Most of these genes are associated with predicted Fur binding sites, implicating them as direct targets of Fur-mediated repression. These data were validated by β-galactosidase and EMSA assays for two operons encoding putative transporters. The role of Fur as a positive regulator is also evident, given that 27 genes were downregulated both by mutation of fur and under low-iron condition. As expected, this group includes many genes involved in energy metabolism, mostly iron-using enzymes. Surprisingly, included in this group are also TonB-dependent receptors genes and the genes fixK, fixT and ftrB encoding an oxygen signaling network required for growth during hypoxia. Bioinformatics analyses suggest that positive regulation by Fur is mainly indirect. In addition to the Fur modulon, iron limitation altered expression of 113 more genes, including induction of genes involved in Fe-S cluster assembly, oxidative stress and heat shock response, as well as repression of genes implicated in amino acid metabolism, chemotaxis and motility. CONCLUSIONS: Using a global transcriptional approach, we determined the C. crescentus iron stimulon. Many but not all of iron responsive genes were directly or indirectly controlled by Fur. The iron limitation stimulon overlaps with other regulatory systems, such as the RpoH and FixK regulons. Altogether, our results showed that adaptation of C. crescentus to iron limitation not only involves increasing the transcription of iron-acquisition systems and decreasing the production of iron-using proteins, but also includes novel genes and regulatory mechanisms
Resumo:
Transcription is controlled by promoter-selective transcriptional factors (TFs), which bind to cis-regulatory enhancers elements, termed hormone response elements (HREs), in a specific subset of genes. Regulation by these factors involves either the recruitment of coactivators or corepressors and direct interaction with the basal transcriptional machinery (1). Hormone-activated nuclear receptors (NRs) are well characterized transcriptional factors (2) that bind to the promoters of their target genes and recruit primary and secondary coactivator proteins which possess many enzymatic activities required for gene expression (1,3,4). In the present study, using single-cell high-resolution fluorescent microscopy and high throughput microscopy (HTM) coupled to computational imaging analysis, we investigated transcriptional regulation controlled by the estrogen receptor alpha (ERalpha), in terms of large scale chromatin remodeling and interaction with the associated coactivator SRC-3 (Steroid Receptor Coactivator-3), a member of p160 family (28) primary coactivators. ERalpha is a steroid-dependent transcriptional factor (16) that belongs to the NRs superfamily (2,3) and, in response to the hormone 17-ß estradiol (E2), regulates transcription of distinct target genes involved in development, puberty, and homeostasis (8,16). ERalpha spends most of its lifetime in the nucleus and undergoes a rapid (within minutes) intranuclear redistribution following the addition of either agonist or antagonist (17,18,19). We designed a HeLa cell line (PRL-HeLa), engineered with a chromosomeintegrated reporter gene array (PRL-array) containing multicopy hormone response-binding elements for ERalpha that are derived from the physiological enhancer/promoter region of the prolactin gene. Following GFP-ER transfection of PRL-HeLa cells, we were able to observe in situ ligand dependent (i) recruitment to the array of the receptor and associated coregulators, (ii) chromatin remodeling, and (iii) direct transcriptional readout of the reporter gene. Addition of E2 causes a visible opening (decondensation) of the PRL-array, colocalization of RNA Polymerase II, and transcriptional readout of the reporter gene, detected by mRNA FISH. On the contrary, when cells were treated with an ERalpha antagonist (Tamoxifen or ICI), a dramatic condensation of the PRL-array was observed, displacement of RNA Polymerase II, and complete decreasing in the transcriptional FISH signal. All p160 family coactivators (28) colocalize with ERalpha at the PRL-array. Steroid Receptor Coactivator-3 (SRC-3/AIB1/ACTR/pCIP/RAC3/TRAM1) is a p160 family member and a known oncogenic protein (4,34). SRC-3 is regulated by a variety of posttranslational modifications, including methylation, phosphorylation, acetylation, ubiquitination and sumoylation (4,35). These events have been shown to be important for its interaction with other coactivator proteins and NRs and for its oncogenic potential (37,39). A number of extracellular signaling molecules, like steroid hormones, growth factors and cytokines, induce SRC-3 phosphorylation (40). These actions are mediated by a wide range of kinases, including extracellular-regulated kinase 1 and 2 (ERK1-2), c-Jun N-terminal kinase, p38 MAPK, and IkB kinases (IKKs) (41,42,43). Here, we report SRC-3 to be a nucleocytoplasmic shuttling protein, whose cellular localization is regulated by phosphorylation and interaction with ERalpha. Using a combination of high throughput and fluorescence microscopy, we show that both chemical inhibition (with U0126) and siRNA downregulation of the MAP/ERK1/2 kinase (MEK1/2) pathway induce a cytoplasmic shift in SRC-3 localization, whereas stimulation by EGF signaling enhances its nuclear localization by inducing phosphorylation at T24, S857, and S860, known partecipants in the regulation of SRC-3 activity (39). Accordingly, the cytoplasmic localization of a non-phosphorylatable SRC-3 mutant further supports these results. In the presence of ERalpha, U0126 also dramatically reduces: hormone-dependent colocalization of ERalpha and SRC-3 in the nucleus; formation of ER-SRC-3 coimmunoprecipitation complex in cell lysates; localization of SRC-3 at the ER-targeted prolactin promoter array (PRL-array) and transcriptional activity. Finally, we show that SRC-3 can also function as a cotransporter, facilitating the nuclear-cytoplasmic shuttling of estrogen receptor. While a wealth of studies have revealed the molecular functions of NRs and coregulators, there is a paucity of data on how these functions are spatiotemporally organized in the cellular context. Technically and conceptually, our findings have a new impact upon evaluating gene transcriptional control and mechanisms of action of gene regulators.
Resumo:
Neuronal networks exhibit diverse types of plasticity, including the activity-dependent regulation of synaptic functions and refinement of synaptic connections. In addition, continuous generation of new neurons in the “adult” brain (adult neurogenesis) represents a powerful form of structural plasticity establishing new connections and possibly implementing pre-existing neuronal circuits (Kempermann et al, 2000; Ming and Song, 2005). Neurotrophins, a family of neuronal growth factors, are crucially involved in the modulation of activity-dependent neuronal plasticity. The first evidence for the physiological importance of this role evolved from the observations that the local administration of neurotrophins has dramatic effects on the activity-dependent refinement of synaptic connections in the visual cortex (McAllister et al, 1999; Berardi et al, 2000; Thoenen, 1995). Moreover, the local availability of critical amounts of neurotrophins appears to be relevant for the ability of hippocampal neurons to undergo long-term potentiation (LTP) of the synaptic transmission (Lu, 2004; Aicardi et al, 2004). To achieve a comprehensive understanding of the modulatory role of neurotrophins in integrated neuronal systems, informations on the mechanisms about local neurotrophins synthesis and secretion as well as ditribution of their cognate receptors are of crucial importance. In the first part of this doctoral thesis I have used electrophysiological approaches and real-time imaging tecniques to investigate additional features about the regulation of neurotrophins secretion, namely the capability of the neurotrophin brain-derived neurotrophic factor (BDNF) to undergo synaptic recycling. In cortical and hippocampal slices as well as in dissociated cell cultures, neuronal activity rapidly enhances the neuronal expression and secretion of BDNF which is subsequently taken up by neurons themselves but also by perineuronal astrocytes, through the selective activation of BDNF receptors. Moreover, internalized BDNF becomes part of the releasable source of the neurotrophin, which is promptly recruited for activity-dependent recycling. Thus, we described for the first time that neurons and astrocytes contain an endocytic compartment competent for BDNF recycling, suggesting a specialized form of bidirectional communication between neurons and glia. The mechanism of BDNF recycling is reminiscent of that for neurotransmitters and identifies BDNF as a new modulator implicated in neuro- and glio-transmission. In the second part of this doctoral thesis I addressed the role of BDNF signaling in adult hippocampal neurogenesis. I have generated a transgenic mouse model to specifically investigate the influence of BDNF signaling on the generation, differentiation, survival and connectivity of newborn neurons into the adult hippocampal network. I demonstrated that the survival of newborn neurons critically depends on the activation of the BDNF receptor TrkB. The TrkB-dependent decision regarding life or death in these newborn neurons takes place right at the transition point of their morphological and functional maturation Before newborn neurons start to die, they exhibit a drastic reduction in dendritic complexity and spine density compared to wild-type newborn neurons, indicating that this receptor is required for the connectivity of newborn neurons. Both the failure to become integrated and subsequent dying lead to impaired LTP. Finally, mice lacking a functional TrkB in the restricted population of newborn neurons show behavioral deficits, namely increased anxiety-like behavior. These data suggest that the integration and establishment of proper connections by newly generated neurons into the pre-existing network are relevant features for regulating the emotional state of the animal.