975 resultados para Structural adjustment program
Resumo:
The work presented in this thesis aims at developing a new separation process based on the application of supported magnetic ionic liquid membranes, SMILMs, using magnetic ionic liquids, MILs. MILs have attracted growing interest due to their ability to change their physicochemical characteristics when exposed to variable magnetic field conditions. The magnetic responsive behavior of MILs is thus expected to contribute for the development of more efficient separation processes, such as supported liquid membranes, where MILs may be used as a selective carrier. Driven by the MILs behavior, these membranes are expected to switch reversibly their permeability and selectivity by in situ and non-invasive adjustment of the conditions (e.g. intensity, direction vector and uniformity) of an external applied magnetic field. The development of these magnetic responsive membrane processes were anticipated by studies, performed along the first stage of this PhD work, aiming at getting a deep knowledge on the influence of magnetic field on MILs properties. The influence of the magnetic field on the molecular dynamics and structural rearrangement of MILs ionic network was assessed through a 1H-NMR technique. Through the 1H-NMR relaxometry analysis it was possible to estimate the self-diffusion profiles of two different model MILs, [Aliquat][FeCl4] and [P66614][FeCl4]. A comparative analysis was established between the behavior of magnetic and non-magnetic ionic liquids, MILs and ILs, to facilitate the perception of the magnetic field impact on MILs properties. In contrast to ILs, MILs show a specific relaxation mechanism, characterized by the magnetic dependence of their self-diffusion coefficients. MILs self-diffusion coefficients increased in the presence of magnetic field whereas ILs self-diffusion was not affected. In order to understand the reasons underlying the magnetic dependence of MILs self-diffusion, studies were performed to investigate the influence of the magnetic field on MILs’ viscosity. It was observed that the MIL´s viscosity decreases with the increase of the magnetic field, explaining the increase of MILs self-diffusion according to the modified Stokes- Einstein equation. Different gas and liquid transport studies were therefore performed aiming to determine the influence of the magnetic behavior of MILs on solute transport through SMILMs. Gas permeation studies were performed using pure CO2 andN2 gas streams and air, using a series of phosphonium cation based MILs, containing different paramagnetic anions. Transport studies were conducted in the presence and absence of magnetic field at a maximum intensity of 1.5T. The results revealed that gas permeability increased in the presence of the magnetic field, however, without affecting the membrane selectivity. The increase of gas permeability through SMILMs was related to the decrease of the MILs viscosity under magnetic field conditions.(...)
Resumo:
RESUMO - Contexto: a avaliação da qualidade como tema potencialmente importante para utentes e prestadores de cuidados de saúde. A taxa de mortalidade como medida de resultados com um adequado ajustamento do risco. A existência de determinadas características estruturais do hospital às quais está associada uma menor mortalidade. Objectivos: identificar diferenças no desempenho e na taxa de mortalidade dos hospitais e investigar que características estruturais justificam essas diferenças. Metodologia: foram seleccionados os episódios de internamento das doenças de maior mortalidade hospitalar. A medida de desempenho considerada foi a comparação entre a mortalidade observada e a mortalidade esperada, calculada a partir da escala preditiva da mortalidade do Disease Staging, recalibrada para Portugal. A medida de desempenho foi analisada por hospital, doença e grupo de doenças. A ordenação dos hospitais pelo desempenho foi comparada com a ordenação dos hospitais pela taxa de mortalidade observada. O desempenho dentro de cada hospital foi analisado para um grupo de doenças seleccionadas. A relação entre o valor da medida de desempenho e as variáveis «número de episódios», «índice tecnológico» e «gravidade dos doentes tratados» foi analisada através da regressão linear para o conjunto dos episódios e para cada doença e grupo de doenças. Resultados: foram incluídos 379 074 episódios, agrupados em 21 doenças e 8 grupos de doenças e tratados em 81 hospitais. A taxa de mortalidade observada foi de 12%. Existiam diferenças no desempenho por hospital, alguns dos quais se destacam pelo seu melhor/pior nível de desempenho. Foram observadas as limitações da taxa de mortalidade bruta como instrumento de análise do desempenho, no contexto de hospitais com diferentes níveis de risco dos doentes tratados. Para além disso, evidenciou-se que a análise do hospital como um todo ou em cada uma das partes tem resultados distintos, dada a existência de diferentes níveis de desempenho dentro do hospital. Finalmente, verificou- se que a relação entre volume e desempenho, quando existe, é, na quase totalidade dos casos, não linear e inversa à referida na literatura.
Resumo:
The purpose of this project is to analyse and evaluate if the rural tourism cottage Quinta dos I’s will be profitable within the first five years of operation. It starts with a brief description of the business, followed by an industry analysis of the rural tourism market in Portugal and an intensive competitor analysis to evaluate Quinta dos I’s’ competitive advantages. The project then defines a marketing plan to generate awareness and establish the cottage in the market. Finally, a financial analysis is performed to examine the outcome of Quinta dos I’s’ recommended strategic activities. The results of this project show that the cottage is profitable after the first year of operation and expects to grow annually.
Resumo:
Within the civil engineering field, the use of the Finite Element Method has acquired a significant importance, since numerical simulations have been employed in a broad field, which encloses the design, analysis and prediction of the structural behaviour of constructions and infrastructures. Nevertheless, these mathematical simulations can only be useful if all the mechanical properties of the materials, boundary conditions and damages are properly modelled. Therefore, it is required not only experimental data (static and/or dynamic tests) to provide references parameters, but also robust calibration methods able to model damage or other special structural conditions. The present paper addresses the model calibration of a footbridge bridge tested with static loads and ambient vibrations. Damage assessment was also carried out based on a hybrid numerical procedure, which combines discrete damage functions with sets of piecewise linear damage functions. Results from the model calibration shows that the model reproduces with good accuracy the experimental behaviour of the bridge.
Resumo:
A modificação térmica tem-se revelado um método eficaz na melhoria da durabilidade de elementos de madeira. Até ao momento, as aplicações da madeira termicamente modificada (MTM) têm sido limitadas a revestimentos já que o tratamento térmico de tratamento conduz a uma redução significativa das resistências mecânicas da madeira. Contudo, este tratamento térmico poderá valorizar e potenciar a utilização de espécies de madeira menos utilizadas na construção, como são o Eucalipto e o Pinho bravo nacional. Com o objetivo de avaliar o efeito do tratamento térmico nas espécies referidas e, complementarmente, na madeira de Faia e Freixo, realizou-se uma campanha experimental composta por ensaios de caracterização mecânica (compressão paralela às fibras e flexão) e de estabilidade dimensional (retração, inchamento e teor de água de equilíbrio (TAE)). Para efeitos de comparação, todos os ensaios envolveram séries de provetes de cada espécie de madeira natural e MTM. Os resultados obtidos são coerentes com a bibliografia disponível, o aumento da estabilidade dimensional, assim como a diminuição do TAE e das propriedades mecânicas de flexão foram verificadas, permitindo, assim, avaliar a influência da modificação térmica nas propriedades de espécies de madeira presentes em Portugal.
Resumo:
The authors thank the federal agency CAPES and the Foundation for Research Support of the state of Sao Paulo, Brazil (FAPESP) for providing a PhD scholarship, and the University of Minho, in Portugal, for the international collaboration.
Resumo:
Higher education in Portugal, in the last forty years, has undergone profound changes with the enlargement of public higher education network, the appearance of new institutions, the quantity and the heterogeneity of students. The implementation of the Bologna Process in European community countries led to the redesign of higher education Portuguese courses as well as their corresponding curricula. In recent years, the use of Project-led education was one of the most significant changes in teaching and learning, particularly in engineering in higher education in Portugal. This teaching methodology encourages students and teachers to undertake new roles, new responsibilities and a new learning perspective. This study aims at understanding whether the role of the tutor is to be suitable to the needs and expectations of Project-led education students. These changes however are not only structural. At the University of Minho, new teaching and learning methodologies were adopted, which could guide the training of professionals on to the twenty-first century. The opportunity arising from the implementation of Project-led education in Engineering methodology was used in the University of Minho’s courses. This teaching method is intended to provide students with educational support programs that benefit the academic performance, allowing the opportunity to upgrade, train and develop the ability to study and learn more effectively. Through the Project-led education it is possible to provide students with techniques and procedures and develop the ability to communicate orally and in writing. Students and teachers have assumed new roles in the teaching-learning process allowing in one hand the students to explore, discover and question themselves about some knowledge and on the other hand the teachers to change to a tutor, a companion and to a student project guide. Therefore, surveys were analyzed, comprising questions about the most significant contribution of the tutor as well as if there are some initial expectations that have not been foreseen by the tutor.
Resumo:
The reinforcement mechanisms at the cross section level assured by fibres bridging the cracks in steel fibre reinforced self-compacting concrete (SFRSCC) can be significantly amplified at structural level when the SFRSCC is applied in structures with high support redundancy, such is the case of elevated slab systems. To evaluate the potentialities of SFRSCC as the fundamental material of elevated slab systems, a ¼ scale SFRSCC prototype of a residential building was designed, built and tested. The extensive experimental program includes material tests for characterizing the relevant properties of SFRSCC, as well as structural tests for assessing the performance of the prototype at serviceability and ultimate limit conditions. Three distinct approaches where adopted to derive the constitutive laws of the SFRSCC in tension that were used in finite element material nonlinear analysis to evaluate the reliability of these approaches in the prediction of the load carrying capacity of the prototype.
Resumo:
Recent research is showing that the addition of Recycled Steel Fibres (RSF) from wasted tyres can decrease significantly the brittle behaviour of cement based materials, by improving its toughness and post-cracking resistance. In this sense, Recycled Steel Fibre Reinforced Concrete (RSFRC) seems to have the potential to constitute a sustainable material for structural and non-structural applications. To assess this potential, experimental and numerical research was performed on the use of RSFRC in elements failing in bending and in beams failing in shear. The values of the fracture mode I parameters of the developed RSFRC were determined by performing inverse analysis with test results obtained in three point notched beam bending tests. To assess the possibility of using RSF as shear reinforcement in Reinforced Concrete (RC) beams, three point bending tests were executed with three series of RSFRC beams flexurally reinforced with a relatively high reinforcement ratio of longitudinal steel bars in order to assure shear failure for all the tested beams. By performing material nonlinear simulations with a computer program based on the finite element method (FEM), the applicability of the fracture mode I crack constitutive law derived from the inverse analysis is assessed for the prediction of the behaviour of these beams. The performance of the formulation proposed by RILEM TC 162 TDF and CEB-FIP 2010 for the prediction of the shear resistance of fibre reinforced concrete elements was also evaluated.
Resumo:
Hybrid Composite Plate (HCP) is a reliable recently proposed retrofitting solution for concrete structures, which is composed of a strain hardening cementitious composite (SHCC) plate reinforced with Carbon Fibre Reinforced Polymer (CFRP). This system benefits from the synergetic advantages of these two composites, namely the high ductility of SHCC and the high tensile strength of CFRPs. In the materialstructural of HCP, the ultra-ductile SHCC plate acts as a suitable medium for stress transfer between CFRP laminates (bonded into the pre-sawn grooves executed on the SHCC plate) and the concrete substrate by means of a connection system made by either chemical anchors, adhesive, or a combination thereof. In comparison with traditional applications of FRP systems, HCP is a retrofitting solution that (i) is less susceptible to the detrimental effect of the lack of strength and soundness of the concrete cover in the strengthening effectiveness; (ii) assures higher durability for the strengthened elements and higher protection to the FRP component in terms of high temperatures and vandalism; and (iii) delays, or even, prevents detachment of concrete substrate. This paper describes the experimental program carried out, and presents and discusses the relevant results obtained on the assessment of the performance of HCP strengthened reinforced concrete (RC) beams subjected to flexural loading. Moreover, an analytical approach to estimate the ultimate flexural capacity of these beams is presented, which was complemented with a numerical strategy for predicting their load-deflection behaviour. By attaching HCP to the beams’ soffit, a significant increase in the flexural capacity at service, at yield initiation of the tension steel bars and at failure of the beams can be achieved, while satisfactory deflection ductility is assured and a high tensile capacity of the CFRP laminates is mobilized. Both analytical and numerical approaches have predicted with satisfactory agreement, the load-deflection response of the reference beam and the strengthened ones tested experimentally.
Resumo:
The present paper deals with the experimental assessment of the effectiveness of steel fibre reinforcement in terms of punching resistance of centrically loaded flat slabs, and to the development of an analytical model capable of predicting the punching behaviour of this type of structures. For this purpose, eight slabs of 2550 x 2550 x 150 mm3 dimensions were tested up to failure, by investigating the influence of the content of steel fibres (0, 60, 75 and 90 kg/m3) and concrete strength class (50 and 70 MPa). Two reference slabs without fibre reinforcement, one for each concrete strength class, and one slab for each fibre content and each strength class compose the experimental program. All slabs were flexurally reinforced with a grid of ribbed steel bars in a percentage to assure punching failure mode for the reference slabs. Hooked ends steel fibres provided the unique shear reinforcement. The results have revealed that steel fibres are very effective in converting brittle punching failure into ductile flexural failure, by increasing both the ultimate load and deflection, as long as adequate fibre reinforcement is assured. An analytical model was developed based on the most recent concepts proposed by the fib Mode Code 2010 for predicting the punching resistance of flat slabs and for the characterization of the behaviour of fibre reinforced concrete. The most refined version of this model was capable of predicting the punching resistance of the tested slabs with excellent accuracy and coefficient of variation of about 5%.
Resumo:
This paper aims to evaluate experimentally the potentialities of Hybrid Composite Plates (HCPs) technique for the shear strengthening of reinforced concrete (RC) beams that were previously subjected to intense damage in shear. HCP is a thin plate of Strain Hardening Cementitious Composite (SHCC) reinforced with Carbon Fiber Reinforced Polymer (CFRP) laminates. For this purpose, an experimental program composed of two series of beams (rectangular and T cross section) was executed to assess the strengthening efficiency of this technique. In the first step of this experimental program, the control beams, without steel stirrups, were loaded up to their shear failure, and fully unloaded. Then, these pre-damaged beams were shear strengthened by applying HCPs to their lateral faces by using a combination of epoxy adhesive and mechanical anchors. The bolts were applied with a certain torque in order to increase the concrete confinement. The obtained results showed that the increase of load carrying capacity of the damaged strengthened beams when HCPs were applied with epoxy adhesive and mechanical anchors was 2 and 2.5 times of the load carrying capacity of the corresponding reference beams (without HCPs) for the rectangular and T cross section beam series, respectively. To further explore the potentialities of the HCPs technique for the shear strengthening, the experimental tests were simulated using an advanced numerical model by a FEM-based computer program. After demonstration the good predictive performance of the numerical model, a parametric study was executed to highlight the influence of SHCC as an alternative for mortar, as well as the influence of torque level applied to the mechanical anchors, on the load carrying capacity of beams strengthened with the proposed technique.
Resumo:
This paper reports on a structural safety assessment and performance evaluation of the upper choir of the Santa Maria de Belém Church in the Jerónimos monastery, Lisbon, one of the most important cultural heritage buildings in Portugal. The possibility of adding a new 20 t organ to the upper choir and its effects on the church structure's response are presented. A refined and a simplified finite-element model is developed to investigate the structure's performance under self-weight and seismic actions. A sensitivity analysis is performed to investigate the effect of masonry mechanical properties and rib cross-sections on the structural response, given the difficulty in accurately obtaining this information. The results show that the safety level of the structure is acceptable, even in the case of adding a heavy new organ.