961 resultados para Sol-gel glasses


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to improve the mechanical performance and water resistance of water-borne conducting polyaniline film, conducting polyaniline/polyurethane-silica hybrid film was prepared in aqueous solution employing silanol-terminated polyurethane and methyltriethoxysilane as sol-gel precursors. The hybrid film showed surface resistivity of 10(8) Omega even though the conducting polyaniline loading was only 10 wt% (or 1.5 wt% of polyaniline), and the mechanical performance as well as water resistance was significantly improved, making it suitable for antistatic application. Therefore, a practical route to water-borne processing of conducting polyaniline is disclosed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Well-dispersed palladium nanoparticles in mesoporous SBA- 15 SiO2 were prepared in a facile one-step approach during sol-gel route under reductive atmosphere. X-ray diffraction (XRD) results indicate that as-synthesized nanocomposites basically remain ordered two-dimensional hexagonal mesostructure while transmission electron microscopy (TEM) study exhibits a well dispersion of palladium nanoparticles within the mesoporous SBA-15 channels. The size of Pd nanoparticles is approximately in the range of 5-10nm. However, the resulting nanocomposites exhibit a highly catalytic activity and reused ability at least after five recycles without ligand in air for both the Suzuki and Heck coupling reactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanocrystalline 8YSZ (8 mol% yttria stabilized zirconia) bulk samples with grain sizes of 20-30 nm were synthesized by Sol-Gel method and then densified under a high pressure of 4.5 GPa at 1273 K for 10 min. The method led to the densification of 8YSZ to a relative density higher than 92% without grain growth. Fourier transmission Raman spectroscopy suggested that 8YSZ underwent a phase transition from the cubic phase to a phase mixture (tetragonal plus a trace of monoclinic) after the densification, which decreased the electrical conductivity to a certain degree as concluded from the impedance spectroscopy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In difference to compact objects of a similar size, toroidal structures have some distinguishing properties that originate from their open inner cavity and closed circuit. Here, a general facile methodology is developed to prepare composite rings with varied compositions on a large scale by using core-shell toroids assembled from tri-block copolymers of poly(4-vinyl pyridine) (PVP)/polystyrene (PS)/PVP. Taking advantage of the complexation ability of the PVP shell, varied components that range from polymers, inorganic materials, metals and their compounds, as well as pre-formed nanoparticles are introduced to the toroidal structures to form composite nanostructures. Metal ions can be adsorbed by PVP through complexation. After in situ reduction, a large number of metal-based functional materials can be prepared. PVP is alkaline, and thus capable of catalyzing the sol-gel process to generate an inorganic shell. Furthermore, pre-formed nanoparticles can also be absorbed by the shell through specific interactions. The PS core is not infiltrative during synthesis, and hollow rings can be derived after the polymer templates are removed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sin and Pr doped CeO2 and Ce6MoO15 based materials were synthesized by sol-gel method. The structure of the powders were characterized by X-ray diffraction (XRD), Raman spectra, field emission scanning electron microscopy(FE-SEM) and the electrical conductivity of the samples was investigated by AC impedance spectroscopy. By comparing the structure and electrical properties of different systems, it could be concluded that the electrical property of Ce6MoO15 based system is better than that of CeO2 system. The added Mo element resulted in the increase of gain size and improved the grain boundary conductivity notably below 600 degrees C, while the Pr dopant induced the smaller grain size and improved the grain boundary conductivity of the materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of solid state electrolytes, Ce-5.2 RE0.8 MoO15-delta (RE = Y, La, Sm, Gd, Dy, Ho, Er), were synthesized by sol-gel method. Their structures and electrical conductivities were characterized by X-ray Diffraction (XRD), Raman and X-ray Photoelectron Spectroscopy (XPS) and AC impedance spectroscopy, respectively. The results show that the concentrations of oxygen vacancy increased with increasing x and their conductivity were improved. And the cell parameters increase as the radius of RE3+ increases. Because the ionic radius of doped Dy3+ (0.0908 nm) is closed to that of Ce4+ (0.0920 nm), their oxide has minimal cell elastic straining between RE3+ and oxygen vacancy, and the system has the least association enthalpy, thus the oxide Ce-5.2 Dy-0.8 MoO15-delta exhibits a higher conductivity (7.02 x 10(-3) S/cm) and lower activation energy (1.056 eV) compared to the other doped compounds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polyelectrolyte complexes (PECs) of chitosan and phosphotungstic acid have been prepared and evaluated as novel proton-conducting membranes for direct methanol fuel cells. Phosphotungstic acid can be fixed within PECs membranes through strong electrostatic interactions, which avoids the decrease of conductivity caused by the dissolving of phosphotungstic acid as previously reported. Scanning electron microscopy (SEM) shows that the PECs membranes are homogeneous and dense. Fourier transform infrared spectroscopy (FTIR) demonstrates that hydrogen bonding is formed between chitosan and phosphotungstic acid. Thermogravimetric analysis (TGA) shows that the PECs membranes have good thermal stability up to 210 degrees C. The PECs membranes exhibit good swelling properties and low methanol permeability (P, 3.3 x 10(-7) cm(2) s(-1)). Proton conductivity (sigma) of the PECs membranes increases at elevated temperature, reaching the value of 0.024 S cm(-1) at 80 degrees C.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel isomeric polyimide/SiO2 hybrid material was successfully prepared through sol-gel technique, and its structure, thermal properties and nano-indenter properties were investigated. First, 3-[(4-phenylethynyl)phthalimide]propyl triethoxysilane (PEIPTES) was successfully synthesized, its structure was characterized by elemental analysis, FT-IR and C-13 NMR. The researches on solubility and thermal properties of PEIPTES show that it can be used for modifying nano-SiO2 precursor. Nano-SiO2 precursor was synthesized by tetraethoxysilane (TECS) through sol-gel technique. Then the PEIPTES solution and the nano-SiO2 precursor were mixed for 6 h to let the PEIPTES molecules react with the nano-SiO2 precursor, and modified nano-SiO2 precursor was obtained. The modified reaction was confirmed by the analyses of FT-IR. At last, isomeric polyimide/SiO2 hybrid material was produced by using isomeric polyimide resin solution and the modified nano-SiO2 precursor after heat treatment process. The structure analysis by SEM indicated that SiO2 particles dispersed in isomeric polyimide matrix homogeneously with nanoscale. Thermogravimetric analyzer, dynamic mechanical thermal analyzer and nano-indenter XP was employed to detect the properties of the materials, the results demonstrated that isomeric polyimide/SiO2 hybrid material has much better thermal properties and nano-indenter properties than those of isomeric polyimide.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For their biocompatibility and potential bionanoelectronic applications, integration of carbon nanotubes (CNTs) with biomolecules such as redox enzyme is highly anticipated. Therein, CNTs are expected to act not only as an electron transfer promoter, but also as immobilizing substrate for biomolecules. In this report, a novel method for immobilization of biomolecules on CNTs was proposed based on ionic interaction, which is of universality and widespread use in biological system. As illustrated, glucose oxidase (GOD) and single-walled carbon nanotubes (SWNTs) were integrated into a unitary bionanocomposite by means of ionic liquid-like unit on functionalized SWNTs. The resulted bionanocomposite illustrated better redox response of immobilized GOD in comparison of that prepared by weak physical absorption without ionic interaction. As a potential application of concept, the electrochemical detection of glucose was exemplified based on this novel bionanocomposite.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Solid solutions of Ce1-xNdxO2-x/2 (0.05 <= x <= 0.2) and (Ce1-xNdx)(0.95)MO0.05O2-delta (0.05 <= x <= 0.2) have been synthesized by a modified sol-gel method. Both materials have very low content of SiO2 (similar to 27 ppm). Their structures and ionic conductivities were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and electrochemical impedance spectroscopy (M). The XRD patterns indicate that these materials are single phases with a cubic fluorite structure. The powders calcined at 300 degrees C with a crystal size of 5.7 nm have good sinterability, and the relative density could reach above 96% after being sintered at 1450 degrees C. With the addition Of MoO3, the sintering temperature could be decreased to 1250 degrees C. Impedance spectroscopy measurement in the temperature range of 250-800 degrees C indicates that a sharp increase of conductivity is observed when a small amount of Nd2O3 is added into ceria, of which Ce0.85Nd0.15O1.925 (15NDC) shows the highest conductivity. With the addition of a small amount Of MoO3, the grain boundary conductivity of 15NDC at 600 degrees C increases from 2.56 S m(-1) to 5.62 S m(-1).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, both the thermal expansion and electrical conductivity of nanocrystalline La2Mo2O9 were studied. The nanocrystalline powder of La2Mo2O9 was obtained by sol-gel method, and with the help of SHP (superhigh pressure) up to 4.5 x 10(4) atm at 700 degrees C for a short time, and the nanocrystalline powder was densified without obvious particle size growth. The electrical conductivity of nanocrystalline La2Mo2O9 was one order of magnitude lower than that of the microcrystalline sample at the same temperature. Owing to the phase transition, the microcrystalline La2MO2O9 has an abrupt increase of thermal expansion with a peak value of 48 x 10(-6) K-1 at 556 degrees C. For the nanocrystalline material, the peak value increases to 112 x 10(-6) K-1 at 520 degrees C. On the other hand, above 600 degrees C the significant growth of particle size of the nanocrystalline La2Mo2O9 was observed, accompanying by a tremendous increase of thermal expansion with a peak value of 1565 x 10(-6) K-1 at 620 degrees C. The electrical conductivity of La1.6Nd0.4Mo2O9 at 800 degrees C is 0.14 S center dot cm(-1) which is about one third higher than that of La2Mo2O9.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quasi-reversible and direct electrochemistry of cytochrome c (cyt. c) has been obtained at a novel electrochemical interface constructed by self-assembling gold nanoparticles (GNPs) onto a three-dimensional silica gel network, without polishing or any modification of the surface. A cleaned gold electrode was first immersed in a hydrolyzed sol of the precursor (3-mercaptopropyl)-trimethoxysilane to assemble three-dimensional silica gel, then the GNPs were chemisorbed onto the thiol groups of the sol-gel network and modified the kinetic barrier of this self-assembled silicate film. Cyclic voltammetry and AC impendance spectroscopy were performed to evaluate electrochemical properties of the as prepared interface. These nanoparticle inhibits the adsorption of cyt. c onto bare electrode and acts as a bridge of electron transfer between protein and electrode.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A rather simple but yet effective way to achieve a superhydrophobic film by extending a Teflon film is proposed. The water contact angle can be increased from 118 to 165degrees by extending to ca. 190%. The fibrous crystals and the increasing distance between the fibrous crystals are believed responsible for the high water-contact angle. It indicates that the density of the aligned microstructures is very important for the superhydrophobicity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gd2O3: EU3+ phosphors were prepared by urea homogeneous precipitation with different surfactant and sol-gel method. XRD patterns show that all the obtained samples are in cubic Gd2O3, and the results of FTIR and fluorescent spectra conformed that OP is a good surfactant for preparing the Gd2O3: Eu3+ phosphors. The SEM photographs show that the particles prepared by urea homogeneous precipitation method are all spherical and well-dispersed, and grain morphology can be controlled by different surfactant. XRD and SEM indicate that the particle sizes prepared by sol-gel method are in the range of 5 similar to 30 nm, and the grain sizes increase with increasing of heated temperatures. Luminescence spectra indication that the main emission peaks of all samples are at 610 nm, the intensities are different from samples prepared with different surfactant and the luminescence intensities increase with increasing of annealed temperatures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The monodisperse array and nanowires Of Y2O3:Eu3+ phosphor were synthesized using anodic aluminum oxide (AAO) template by sol-gel method. Scanning electron microscope (SEM) images indicated that Y2O3:Eu3+ nanowires are parallelly arranged, all of which are in uniform diameter of about 50 nm. The high-magnification SEM image showed that each nanowire is composed of a lot of agglutinating particles. The patterns of selected-area electron diffraction confirmed that Y2O3:EU3+ nanowires mainly consist of polycrystalline materials. Excitation and emission spectra Of Y2O3:E U3+/AAO composite films were measured. The characteristic red emission peak of EU3+ ion attributed to D-5(0)-->F-7(2) transition in Y2O3:EU3+/AAO nanowires broadened its halfwidth.