999 resultados para Sludge sedimentation rate


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Interstitial waters from four sites of the Japan Sea (794 to 797) have been analyzed for stable isotopes (delta D, delta11B, delta18O, and delta34S) and 87Sr/86Sr, besides major and minor ions. The isotopic composition is dominated by organic matter degradation, alteration of ash layers and volcaniclastic sands, silica transformation (opal A/CT), and basement alteration. Organic matter degradation and corresponding sulfate reduction leads to 32S depletion and is dependent upon sedimentation rate. The remaining sulfate reservoir is characterized by very "heavy" delta34S ratios, up to +93 ? (rel. CDT = Canyon Diabolo Troilite). "Barite fronts," which may develop in such sediments, should also be characterized by very "heavy" sulfur isotopes. The alteration of volcaniclastic material in the Quaternary sections influences the delta18O (-1.5 ? shift) and delta11B (desorption and later adsorption of "labile"11B). A pronounced positive delta11B anomaly at Site 795 represents the depth range of preferential 10B uptake by alteration products of the ash layers. At Site 796 delta D, delta11B, and 87Sr/86Sr are severely affected by alteration processes of volcaniclastic sands. The opal A/CT transformation may influence the oxygen isotopes and serves as a potential source for B, which is liberated at this interval at Site 795. This positive B anomaly is not reflected in the delta11B profile. Basement alteration processes dominate the sedimentary sequence below the opal A/CT transition, which serves as a chemical and physical boundary. The decreases in delta D and delta18O are probably related to a "paleo ocean water reservoir" situated in the permeable Layer II of the oceanic crust, as is indicated by the positive correlation between these two parameters. Besides Mg, alkalies and delta18O basement rocks also serve as a sink for 11 B (Site 795) and are the source for the Ca and Sr increases, as is documented by the less radiogenic 87Sr/86Sr ratio. 87Sr/86Sr ratios for the lowermost pore waters from Site 795 (0.70529) are comparable to those from volcaniclastic rocks from the "Green Tuff' region (0.704 to 0.706) and oil field brines from the Niigata Oil Field.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Strontium isotopic compositions of ichthyoliths (microscopic fish remains) in deep-sea clays recovered from the North Pacific Ocean (ODP holes 885A, 886B, and 886C) are used to provide stratigraphic age control within these otherwise undatable sediments. Age control within the deep-sea clays is crucial for determining changes in sedimentation rates, and for calculating fluxes of chemical and mineral components to the sediments. The Sr isotopic ages are in excellent agreement with independent age datums from above (diatom ooze), below (basalt basement) and within (Cretaceous-Tertiary boundary) the clay deposit. The 87Sr/86Sr ratios of fish teeth from the top of the pelagic clay unit (0.7089891), indicate an Late Miocene age (5.8 Ma), as do radiolarian and diatom biostratigraphic ages in the overlying diatom ooze. The 87Sr/86Sr ratio (0.707887) is consistent with a Cretaceous-Tertiary boundary age, as identified by anomalously high iridium, shocked quartz, and sperules in Hole 886C. The 87Sr/86Sr ratios of pretreated fish teeth from the base of the clay unit are similar to Late Cretaceous seawater (0.707779-0.7075191), consistent with radiometric ages from the underlying basalt of 81 Ma. Calculation of sedimentation rates based on Sr isotopic ages from Hole 886C indicate an average sedimentation rate of 17.7 m/Myr in Unit II (diatom ooze), 0.55 m/Myr in Unit IIIa (pelagic clay), and 0.68 m/Myr in Unit IIIb (distal hydrothermal precipitates). The Sr isotopic ages indicate a period of greatly reduced sedimentation (or possible hiatus) between about 35 and 65 Ma (Eocene-Paleocene), with a linear sedimentation rate of only 0.04 m/Myr The calculated sedimentation rates are generally inversely proportional to cobalt accumulation rates and ichthyolith abundances. However, discrepancies between Sr isotope ages and cobalt accumulation ages of l0-15 Myr are evident, particularly in the middle of the clay unit IIIa (Oligocene-Paleocene).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lower Campanian to middle Eocene chalks and oozes were recovered at Sites 761 and 762 of Ocean Drilling Program Leg 122 on the Exmouth Plateau, northwest Australia. Paleomagnetic analyses were made on 125 samples from Hole 761B and 367 samples from Hole 762C. Thermal cleaning, alternating field demagnetization, or mixed treatment reveals a stable remanent component of normal or reversed polarity. Correlation of the magnetic polarity sequences established for these holes with the standard magnetic polarity time scale was aided by nannofossil zonation. At Hole 761B, the sequence extends from Subchron C32-N (upper Campanian) through Subchron C17-R (middle Eocene), but given the low sedimentation rate, not all the subchrons of the standard magnetic polarity sequence were recognized. The sequence at Hole 762C extends from Subchron C13-R (middle Eocene) to the boundary between Chrons C33 and C34 (lower Campanian). The sedimentation rate is higher at Hole 762C, and all the magnetic polarity subchrons of the Campanian and Maestrichtian stages were identified. Thus, this hole could be a reference section to refine the Upper Cretaceous time scale.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The AND-2A drillcore (Antarctic Drilling Program-ANDRILL) was successfully completed in late 2007 on the Antarctic continental margin (Southern McMurdo Sound, Ross Sea) with the aim of tracking ice proximal to shallow marine environmental fluctuations and to document the 20-Ma evolution of the Erebus Volcanic Province. Lava clasts and tephra layers from the AND-2A drillcore were investigated from a petrographic and stratigraphic point of view and analyzed by the 40Ar-39Ar laser technique in order to constrain the age model of the core and to gain information on the style and nature of sediment deposition in the Victoria Land Basin since Early Miocene. Ten out of 17 samples yielded statistically robust 40Ar-39Ar ages, indicating that the AND-2A drillcore recovered <230 m of Middle Miocene (~128-358 m below sea floor, ~11.5-16.0 Ma) and >780 m of Early Miocene (~358-1093 m below sea floor, ~16.0-20.1 Ma). Results also highlight a nearly continuous stratigraphic record from at least 358 m below sea floor down hole, characterized by a mean sedimentation rate of ~19 cm/ka, possible oscillations of no more than a few hundreds of ka and a break within ~17.5-18.1 Ma. Comparison with available data from volcanic deposits on land, suggests that volcanic rocks within the AND-2A core were supplied from the south, possibly with source areas closer to the drill site for the upper core levels, and from 358 m below sea floor down hole, with the 'proto-Mount Morning' as the main source.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Firm stratigraphic correlations are needed to evaluate the global significance of unconformity bounded units (sequences). We correlate the well-developed uppermost Campanian and Maestrichtian sequences of the New Jersey Coastal Plain to the geomagnetic polarity time scale (GPTS) by integrating Sr-isotopic stratigraphy and biostratigraphy. To do this, we developed a Maestrichtian (ca. 73-65 Ma) Sr-isotopic reference section at Deep Sea Drilling Project Hole 525A in the southeastern Atlantic Ocean. Maestrichtian strata can then be dated by measuring their 87Sr/86Sr composition, calibrating to the GPTS of S. C. Cande and D. V. Kent (1993, personal commun.), and using the equation Age (Ma) = 37326.894-52639.89 (87Sr/86Sr). Sr-stratigraphic resolution for the Maestrichtian is estimated as +-1.2 to +-2 m.y. At least two unconformity-bounded units comprise the uppermost Campanian to Maestrichtian strata in New Jersey. The lower one, the Marshalltown sequence, is assigned to calcareous nannofossil Zones CC20/21 (~NC19) and CC22b (~NC20). It ranges in age from ~74.1 to 69.9 Ma based on Sr-isotope age estimates. The overlying Navesink sequence is assigned to calcareous nannoplankton Zones CC25-26 (~NC21-23); it ranges in age from 69.3 to 65 Ma based on Sr-isotope age estimates. The upper part of this sequence, the Tinton Formation, has no calcareous planktonic control; Sr-isotopes provide an age estimate of 66 +- 1.2 Ma (latest Maestrichtian). Sequence boundaries at the base and the top of the Marshalltown sequence match boundaries elsewhere in the Atlantic Coastal Plain (Owens and Gohn, 1985) and the inferred global sea-level record of Haq et al. (1987); they support eustatic changes as the mechanism controlling depositional history of this sequence. However, the latest Maestrichtian record in New Jersey does not agree with Haq et al. (1987); we attribute this to correlation and time-scale differences near the Cretaceous/Paleogene boundary. High sedimentation rates in the latest Maestrichtian of New Jersey (Shrewsbury Member of the Red Bank Formation and the Tinton Formation) suggest tectonic uplift and/or rapid progradation during deposition of the highstand systems tract.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The monograph is devoted to the main results of research on the Trans Indian Ocean Geotraverse from the Maskarene Basin to the north-western margin of Australia. These results were obtained by Russian specialists and together with Indian specialists during 15 years of cooperation in investigation of geological structure and mineral resources of the Indian Ocean. The monograph includes materials on information support of marine geological and geophysical studies, composition and structure of information resources on the Indian Ocean, bathymetry and geomorphology, structure and geological nature of the magnetic field, gravity field, plate tectonics, crustal structure and sedimentary cover, seismic stratigraphy, perspectives for detecting oil and gas, solid minerals, sediment composition, composition and properties of clay minerals, stratigraphy and sediment age, chemical composition of sediments, composition of and prospects for solid minerals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Strontium isotope stratigraphy was used to date 5 discrete horizons within the CRP-3 drillhole. A single in situ modiolid bivalve fragment at 10.88 mbsf gives an age of 30.9 (±0.8) Ma for the associated sediment. The four remaining well preserved fragments recovered from 29.94-190.31 mbsf are within error of this age, indicating a high sedimentation rate and suggesting little time is missing in disconformities. The diagenetic alteration of carbonate macrofossils by continental fluids (and possibly seawater) is a common feature to 320 mbsf.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sediments recovered from a drift deposit located on the Pacific side of the Antarctic Peninsula (ODP Leg 178, Site 1101) give a physical record of a bottom current, sourced from the Weddell Sea Deep Water, for the past 3 Ma. Sediment grain size and magnetic fabric analyses indicate a contourite depositional environment and little change in the average intensity of this current. Terrigenous fluxes decreased around the time of the onset of Northern Hemisphere Glaciation, which we interpret as a freezing of the base of the Antarctic Peninsula Ice Cap. Terrigenous fluxes have increased since 1.7 Ma implying a possible return of the Antarctic Peninsula Ice Cap to a more wet-based ice sheet.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During the late Pliocene-middle Pleistocene, 63 species of elongate, bathyal-upper abyssal benthic foraminifera (Extinction Group = Stilostomellidae, Pleurostomellidae, some Nodosariidae) declined in abundance and finally disappeared in the northern Indian Ocean (ODP Sites 722, 758), as part of the global extinction of at least 88 related species at this time. The detailed record of withdrawal of these species differs by depth and geography in the Indian Ocean. In northwest Indian Ocean Site 722 (2045 m), the Extinction Group of 54 species comprised 2-15% of the benthic foraminiferal fauna in the earliest Pleistocene, but declined dramatically during the onset of the mid-Pleistocene Transition (MPT) at 1.2-1.1 Ma, with all but three species disappearing by the end of the MPT (~0.6 Ma). In northeast Indian Ocean Site 758 (2925 m), the Extinction Group of 44 species comprised 1-5% of the benthic foraminiferal fauna at ~3.3-2.6 Ma, but declined in abundance and diversity in three steps, at ~2.5, 1.7, and 1.2 Ma, with all but one species disappearing by the end of the MPT. At both sites there are strong positive correlations between the accumulation rate of the Extinction Group and proxies indicating low-oxygen conditions with a high organic carbon input. In both sites, there was a pulsed decline in Extinction Group abundance and species richness, especially in glacial periods, with some partial recoveries in interglacials. We infer that the glacial declines at the deeper Site 758 were a result of increased production of colder, well-ventilated Antarctic Bottom Water (AABW), particularly in the late Pliocene and during the MPT. The Extinction Group at shallower water depths (Site 722) were not impacted by the deeper water mass changes until the onset of the MPT, when cold, well-ventilated Glacial North Atlantic Intermediate Water (GNAIW) production increased and may have spread into the Indian Ocean. Increased chemical ventilation at various water depths since late Pliocene, particularly in glacial periods, possibly in association with decreased or more fluctuating organic carbon flux, might be responsible for the pulsed global decline and extinction of this rather specialised group of benthic foraminifera.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The studies described here base mainly on sedimentary material collected during the "Indian Ocean Expedition" of the German research vessel "Meteor" in the region of the Indian-Pakistan continental margin in February and March 1965. Moreover,samples from the mouth of the Indus-River were available, which were collected by the Pakistan fishing vessel "Machhera" in March 1965. Altogether, the following quantities of sedimentary material were collected: 59.73 m piston cores. 54.52 m gravity cores. 33 box grab samples. 68 bottom grab samples Component analyses of the coarse fraction were made of these samples and the sedimentary fabric was examined. Moreover, the CaCO3 and Corg contents were discussed. From these investigations the following history of sedimentation can be derived: Recent sedimentation on the shelf is mainly characterized by hydrodynamic processes and terrigenous supply of material. In the shallow water wave action and currents running parallel to the coast, imply a repeated reworking which induces a sorting of the grains and layering of the sediments as well as a lack of bioturbation. The sedimentation rate is very high here. From the coast-line down to appr. 50 m the sediment becomes progressively finer, the conditions of deposition become less turbulent. On the outer shelf the sediment is again considerably coarser. It contains many relicts of planktonic organisms and it shows traces of burrowing. Indications for redeposition are nearly missing, a considerable part of the fine fraction of the sediments is, however, whirled up and carried away. In wide areas of the outer shelf this stirring has gained such a degree that recent deposits are nearly completely missing. Here, coarse relict sands rich in ooids are exposed, which were formed in very shallow stirred water during the time when the sea reached its lowest level, i.e. at the turn of the Pleistocene to the Holocene. Below the relict sand white, very fine-grained aragonite mud was found at one location (core 228). This aragonite mud was obviously deposited in very calm water of some greater depth, possibly behind a reef barrier. Biochemic carbonate precipitation played an important part in the formation of relict sands and aragonite muds. In postglacial times the relict sands were exposed for long periods to violent wave action and to areal erosion. In the present days they are gradually covered by recent sediments proceeding from the sides. On the continental margin beyond the shelf edge the distribution of the sediments is to a considerable extent determined by the morphology of the sea bottom. The material originating from the continent and/or the shelf, is less transported by action of the water than by the force of gravity. Within the range of the uppermost part of the continental slope recent sedimentation reaches its maximum. Here the fine material is deposited which has been whirled up in the zone of the relict sands. A laminated fine-grained sediment is formed here due to the very high sedimentation rate as well as to the extremely low O2-content in the bottom water, which prevents life on the bottom of the sea and impedes thus also bioturbation. The lamination probaly reflects annual variation in deposition and can be attributed to the rhythm of the monsoon with its effects on the water and the weather conditions. In the lower part of the upper continental slope sediments are to be found which show in varying intensity, intercalations of fine material (silt) from the shelf, in large sections of the core. These fine intercalations of allochthonous material are closely related to the autochthonous normal sediment, so that a great number of small individual depositional processes can be inferred. In general the intercalations are missing in the uppermost part of the cores; in the lower part they can be met in different quantities, and they reach their maximum frequency in the upper part of the lower core section. The depositions described here were designated as turbid layer sediments, since they get their material from turbid layers, which transport components to the continental slope which have been whirled up from the shelf. Turbidites are missing in this zone. Since the whole upper continental slope shows a low oxygen-content of the bottom water the structure of the turbid layer sediments is more or less preserved. The lenticular-phacoidal fine structure does, however, not reflect annual rhythms, but sporadic individual events, as e.g. tsunamis. At the lower part of the continental slope and on the continental rise the majority of turbidites was deposited, which, during glacial times and particularly at the beginning of the post-glacial period, transported material from the zone of relict sands. The Laccadive Ridge represented a natural obstacle for the transport of suspended sediments into the deep sea. Core SIC-181 from the Arabian Basin shows some intercalations of turbidites; their material, however, does not originate from the Indian Shelf, but from the Laccadive Ridge. Within the range of the Indus Cone it is surprising that distinct turbidites are nearly completely missing; on the other hand, turbid layer sediments are to be found. The bottom of the sea is showing still a slight slope here, so that the turbidites funneled through the Canyon of the Swatch probably rush down to greater water depths. Due to the particularly large supply of suspended material by theIndus River the turbid layer sediments show farther extension than in other regions. In general the terrigenous components are concentrated on the Indus Cone. It is within the range of the lower continental slope that the only discovery of a sliding mass (core 186) has been located. It can be assumed that this was set in motion during the Holocene. During the period of time discussed here the following development of kind and intensity of the deposition of allochthonous material can be observed on the Indian-Pakistan continental margin: At the time of the lowest sea level the shelf was only very narrow, and the zone in which bottom currents were able to stir up material by oscillating motion, was considerably confined. The rivers flowed into the sea near to the edge of the shelf. For this reason the percentage of terrigenous material, quartz and mica is higher in the lower part of many cores (e.g. cores 210 and 219) than in the upper part. The transition from glacial to postglacial times caused a series of environmental changes. Among them the rise of the sea level (in the area of investigation appr. 150 m) had the most important influence on the sedimentation process. In connection with this event many river valleys became canyons, which sucked sedimentary material away from the shelf and transported it in form of turbidites into the deep sea. During the rise of the sea level a situation can be expected with a maximum area of the comparatively plane shelf being exposed to wave action. During this time the process of stirring up of sediments and formation of turbid layers will reach a maximum. Accordingly, the formation of turbidites and turbid layer sediments are most frequent at the same time. This happened in general in the older polstglacial period. The present day high water level results in a reduced supply of sediments into the canyons. The stirring up of sediments from the shelf by wave action is restricted to the finest material. The missing of shelf material in the uppermost core sections can thus be explained. The laminated muds reflect these calm sedimentation conditions as well. In the southwestern part of the area of investigation fine volcanic glass was blown in during the Pleistocene, probably from the southeast. It has thus become possible to correlate the cores 181, 182, 202. Eolian dust from the Indian subcontinent represents probably an important component of the deep sea sediments. The chemism of the bottom as well as of the pore water has a considerable influence on the development of the sediments. Of particular importance in this connection is a layer with a minimum content of oxygen in the sea water (200-1500 m), which today touches the upper part of the continental slope. Above and beyond this oxygen minimum layer somewhat higher O2-values are to be observed at the sea bottom. During the Pleistocene the oxygen minimum layer has obviously been locatedin greater depth as is indicated by the facies of laminated mud occuring in the lower part of core 219. The type of bioturbation is mainly determined by the chemism. Moreover, the chemism is responsible for a considerable selective dissolution, either complete or partial, of the sedimentary components. Within the range of the oxygen minimum layer an alkaline milieu is developed at the bottom. This causes a complete or partial dissolution of the siliceous organisms. Here, bioturbation is in general completely missing; sometimes small pyrite-filled burrowing racks are found. In the areas rich in O2 high pH-values result in a partial dissolution of the calcareous shells. Large, non-pyritized burrowing tracks characterize the type of bioturbation in this environment. A study of the "lebensspuren" in the cores supports the assumption that, particularly within the region of the Laccadive Basin, the oxygen content in the bottom sediments was lower than during the Holocene. This may be attributed to a high sedimentation rate and to a lower O2-content of the bottom water. The composition of the allochthonous sedimentary components, detritus and/or volcanic glass may locally change the chemism to a considerable extent for a certain time; under such special circumstances the type of bioturbation and the state of preservation of the components may be different from those of the normal sediment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Controls of sediment dynamics at the Galician continental slope (NW Iberia) during the past 30 ka were reconstructed from three new gravity cores (GeoB11035-1, 130206-1, 13071-1) based on sedimentological (e.g. sortable silt, IRD), micropalaeontological (e.g. coccoliths), geochemical (AMS 14C, XRF) and geophysical (e.g. magnetic susceptibility) diagnostics. The data are consistent with existing regional knowledge that, during marine isotope stages 3-1, variations in detrital input, marine productivity and sea level were the essential drivers of sediment availability on the slope, whereas deep-water current velocities controlled sediment deposition: (1) the period prior to 30 cal ka BP is characterized by minor but systematic variations in various proxies which can be associated with D-O cycles; (2) between 30 and 18 cal ka BP, high detrital input and steady slope-parallel currents led to constant sedimentation; (3) from the LGM until 10 cal ka BP, the shelf-transgressive sea-level rise increased the detrital particle flux; sedimentation was influenced by significantly enhanced deep-water circulation during the Bølling/Allerød, and subsequent slowing during the Younger Dryas; (4) an abrupt and lasting change to hemipelagic sedimentation at ca. 10 cal ka BP was probably due to Holocene warming and decelerated transgression; (5) after 5 cal ka BP, additional input of detrital material to the slope is plausibly linked to the evolution of fine-grained depocentres on the Galician shelf, this being the first report of this close shelf-slope sedimentary linkage off NW Iberia. Furthermore, there is novel evidence of the nowadays strong outer shelf Iberian Poleward Current becoming established at about 15.5 cal ka BP. The data also demonstrate that small-scale morphologic features and local pathways of sediment export from the neighbouring shelf play an important role for sediment distribution on the NW Iberian slope, including a hitherto unknown sediment conduit off the Ría de Arousa. By implication, the impact of local morphology on along- and down-slope sediment dynamics is more complex than commonly considered, and deserves future attention.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The record of eolian deposition on the Ontong Java Plateau (OJP) since the Oligocene (approximately 33 Ma) has been investigated using dust grain size, dust flux, and dust mineralogy, with the goal of interpreting the paleoclimatology and paleometeorology of the western equatorial Pacific. Studies of modern dust dispersal in the Pacific have indicated that the equatorial regions receive contributions from both the Northern Hemisphere westerly winds and the equatorial easterlies; limited meteorological data suggest that low-altitude westerlies could also transport dust to OJP from proximal sources in the western Pacific. Previous studies have established the characteristics of the grain-size, flux, and mineralogy records of dust deposited in the North Pacific by the mid-latitude westerlies and in the eastern equatorial Pacific by the low-latitude easterlies since the Oligocene. By comparing the OJP records with the well-defined records of the mid-latitude westerlies and the low-latitude easterlies, the importance of multiple sources of dust to OJP can be recognized. OJP dust is composed of quartz, illite, kaolinite/chlorite, plagioclase feldspar, smectite, and heulandite. Mineral abundance profiles and principal components analysis (PCA) of the mineral abundance data have been used to identify assemblages of minerals that covary through all or part of the OJP record. Abundances of quartz, illite, and kaolinite/chlorite covary throughout the interval studied, defining a mineralogical assemblage supplied from Asia. Some plagioclase and smectite were also supplied as part of this assemblage during the late Miocene and Pliocene/Pleistocene, but other source areas have supplied significant amounts of plagioclase, smectite, and heulandite to OJP since the Oligocene. OJP dust is generally coarser than dust deposited by the Northern Hemisphere westerlies or the equatorial easterlies, and it accumulates more rapidly by 1-2 orders of magnitude. These relationships indicate the importance of the local sources on dust deposition at OJP. The grain-size and flux records of OJP dust do not exhibit most of the events observed in the corresponding records of the Northern Hemisphere westerlies or the equatorial easterlies, because these features are masked by the mixing of dust from several sources at OJP. The abundance record of the Asian dust assemblage at OJP, however, does contain most of the features characteristic of dust flux by means of the Northern Hemisphere westerlies, indicating that the paleoclimatic and paleometeorologic signal of a particular source area and wind system can be preserved in areas well beyond the region dominated by that source and those winds. Identifying such a signal requires "unmixing" the various dust assemblages, which can be accomplished by combining grain-size, flux, and mineralogic data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study involves the analysis and interpretation of geochemical data from a suite of sediment samples recovered at ODP Hole 752A. The samples encompass the time period that includes the lithospheric extension and uplift of Broken Ridge, and they record deposition below and above the mid-Eocene angular unconformity that denotes this uplift. A Q-mode factor analysis of the geochemical data indicates that the sediments in this section are composed of a mixture of three geochemical end members that collectively account for 94.2% of the total variance in the data. An examination of interelement ratios for each of these end members suggests that they represent the following sedimentary components: (1) a biogenic component, (2) a volcanogenic component, and (3) a hydrothermal component. The flux of the biogenic component decreases almost thirtyfold across the Eocene unconformity. This drastic reduction in the deposition of biogenic materials corresponds to the almost complete disappearance of chert layers, diatoms, and siliceous microfossils and is coincident with the uplift of Broken Ridge. The volcanogenic component is similar in composition to Santonian ash recovered at Hole 755A on Broken Ridge and is the apparent source of the Fe-stained sediment that immediately overlies the angular unconformity. This finding suggests that significant amounts of Santonian ash were subaerially exposed, weathered, and redeposited and is consistent with data that suggest that the vertical uplift of Broken Ridge was both rapid and extensive. The greatest flux of hydrothermal materials is recorded in the sediments immediately below the angular unconformity. This implies that the uplift of Broken Ridge was preceded by a significant amount of rifting, during which faulting and fracturing of the lithosphere led to enhanced hydrothermal circulation. This time sequence of events is consistent with (but not necessarily diagnostic of) the passive model of lithospheric extension and uplift.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The position and intensity of the southern westerly wind belt varies seasonally as a consequence of changes in sea surface temperature. During the austral winter, the belt expands northward and the wind intensity in the core decreases. Conversely, during the summer, the belt contracts, and the intensity within the core is strengthened. Reconstructions of the westerly winds since the last glacial maximum, however, have suggested that changes at a single site reflected shifts throughout the entire southern wind belt. Here we use sedimentological and pollen records to reconstruct precipitation patterns over the past 12,500 yr from sites along the windward side of the Andes. Precipitation at the sites, located in the present core and northern margin of the westerlies, is driven almost entirely by the wind belt, and can be used to reconstruct its intensity. Rather than varying coherently throughout the Holocene epoch, we find a distinct anti-phasing of wind strength between the core and northern margin over multi-millennial timescales. During the early Holocene, the core westerlies were strong whereas the northern margin westerlies were weak. We observe the opposite pattern in the late Holocene. As this variation resembles modern seasonal variability, we suggest that our observed changes in westerly wind strength can best be explained by variations in sea surface temperature in the eastern South Pacific Ocean.