938 resultados para Slit-pores
Resumo:
This work has as objective to demonstrate technical and economic viability of hydrogen production utilizing glycerol. The volume of this substance, which was initially produced by synthetic ways (from oil-derived products), has increased dramatically due mainly to biodiesel production through transesterification process which has glycerol as main residue. The surplus amount of glycerol has been generally utilized to feed poultry or as fuel in boilers, beyond other applications such as production of soaps, chemical products for food industry, explosives, and others. The difficulty to allocate this additional amount of glycerol has become it in an enormous environment problem, in contrary to the objective of biodiesel chain, which is to diminish environmental impact substituting oil and its derivatives, which release more emissions than biofuels, do not contribute to CO2-cycle and are not renewable sources. Beyond to utilize glycerol in combustion processes, this material could be utilized for hydrogen production. However, a small quantity of works (theoretical and experimental) and reports concerning this theme could be encountered. Firstly, the produced glycerol must be purified since non-reacted amounts of materials, inclusively catalysts, contribute to deactivate catalysts utilized in hydrogen production processes. The volume of non-reacted reactants and non-utilized catalysts during transesterification process could be reutilized. Various technologies of thermochemical generation of hydrogen that utilizes glycerol (and other fuels) were evaluated and the greatest performances and their conditions are encountered as soon as the most efficient technology of hydrogen production. Firstly, a physicochemical analysis must be performed. This step has as objective to evaluate the necessary amount of reactants to produce a determined volume of hydrogen and determine thermodynamic conditions (such as temperature and pressure) where the major performances of hydrogen production could be encountered. The calculations are based on the process where advance degrees are found and hence, fractions of products (especially hydrogen, however, CO2, CO, CH4 and solid carbon could be also encountered) are calculated. To produce 1 Nm3/h of gaseous hydrogen (necessary for a PEMFC - Proton Exchange Membrane Fuel Cell - containing an electric efficiency of about 40%, to generate 1 kWh), 0,558 kg/h of glycerol is necessary in global steam reforming, 0,978 kg/h of glycerol in partial oxidation and cracking processes, and 0,782 kg/h of glycerol in autothermal reforming process. The dry reforming process could not be performed to produce hydrogen utilizing glycerol, in contrary to the utilization of methane, ethanol, and other hydrocarbons. In this study, steam reforming process was preferred due mainly to higher efficiencies of production and the need of minor amount of glycerol as cited above. In the global steam reforming of glycerine, for one mole of glycerol, three moles of water are necessary to produce three moles of CO2 and seven moles of H2. The response reactions process was utilized to predict steam reforming process more accurately. In this mean, the production of solid carbon, CO, and CH4, beyond CO2 and hydrogen was predicted. However, traces of acetaldehyde (C2H2), ethylene (C2H4), ethylene glycol, acetone, and others were encountered in some experimental studies. The rates of determined products obviously depend on the adopted catalysts (and its physical and chemical properties) and thermodynamic conditions of hydrogen production. Eight reactions of steam reforming and cracking were predicted considering only the determined products. In the case of steam reforming at 600°C, the advance degree of this reactor could attain its maximum value, i.e., overall volume of reactants could be obtained whether this reaction is maintained at 1 atm. As soon as temperature of this reaction increases the advance degree also increase, in contrary to the pressure, where advance degree decrease as soon as pressure increase. The fact of temperature of reforming is relatively small, lower costs of installation could be attained, especially cheaper thermocouples and smaller amount of thermo insulators and materials for its assembling. Utilizing the response reactions process in steam reforming, the predicted volumes of products, for the production of 1 Nm3/h of H2 and thermodynamic conditions as cited previously, were 0,264 kg/h of CO (13% of molar fraction of reaction products), 0,038 kg/h of CH4 (3% of molar fraction), 0,028 kg/h of C (3% of molar fraction), and 0,623 kg/h of CO2 (20% of molar fraction). Through process of water-gas shift reactions (WGSR) an additional amount of hydrogen could be produced utilizing mainly the volumes of produced CO and CH4. The overall results (steam reforming plus WGSR) could be similar to global steam reforming. An attention must to be taking into account due to the possibility to produce an additional amount of CH4 (through methanation process) and solid carbon (through Boudouard process). The production of solid carbon must to be avoided because this reactant diminishes (filling the pores) and even deactivate active area of catalysts. To avoid solid carbon production, an additional amount of water is suggested. This method could be also utilized to diminish the volume of CO (through WGSR process) since this product is prejudicial for the activity of low temperature fuel cells (such as PEMFC). In some works, more three or even six moles of water are suggested. A net energy balance of studied hydrogen production processes (at 1 atm only) was developed. In this balance, low heat value of reactant and products and utilized energy for the process (heat supply) were cited. In the case of steam reforming utilizing response reactions, global steam reforming, and cracking processes, the maximum net energy was detected at 700°C. Partial oxidation and autothermal reforming obtained negative net energy in all cited temperatures despite to be exothermic reactions. For global steam reforming, the major value was 114 kJ/h. In the case of steam reforming, the highest value of net energy was detected in this temperature (-170 kJ/h). The major values were detected in the cracking process (up to 2586 kJ/h). The exergetic analysis has as objective, associated with physicochemical analysis, to determine conditions where reactions could be performed at higher efficiencies with lower losses. This study was performed through calculations of exergetic and rational efficiencies, and irreversibilities. In this analysis, as in the previously performed physicochemical analysis, conditions such as temperature of 600°C and pressure of 1 atm for global steam reforming process were suggested due to lower irreversibility and higher efficiencies. Subsequently, higher irreversibilities and lower efficiencies were detected in autothermal reforming, partial oxidation and cracking process. Comparing global reaction of steam reforming with more-accurate steam reforming, it was verified that efficiencies were diminished and irreversibilities were increased. These results could be altered with introduction of WGSR process. An economic analysis could be performed to evaluate the cost of generated hydrogen and determine means to diminish the costs. This analysis suggests an annual period of operation between 5000-7000 hours, interest rates of up to 20% per annum (considering Brazilian conditions), and pay-back of up to 20 years. Another considerations must to be take into account such as tariffs of utilized glycerol and electricity (to be utilized as heat source and (or) for own process as pumps, lamps, valves, and other devices), installation (estimated as US$ 15.000 for a plant of 1 Nm3/h) and maintenance cost. The adoption of emission trading schemes such as carbon credits could be performed since this is a process with potential of mitigates environment impact. Not considering credit carbons, the minor cost of calculated H2 was 0,16288 US$/kWh if glycerol is also utilized as heat sources and 0,17677 US$/kWh if electricity is utilized as heat sources. The range of considered tariff of glycerol was 0-0,1 US$/kWh (taking as basis LHV of H2) and the tariff of electricity is US$ 0,0867 US$/kWh, with demand cost of 12,49 US$/kW. The costs of electricity were obtained by Companhia Bandeirante, localized in São Paulo State. The differences among costs of hydrogen production utilizing glycerol and electricity as heat source was in a range between 0,3-5,8%. This technology in this moment is not mature. However, it allows the employment generation with the additional utilization of glycerol, especially with plants associated with biodiesel plants. The produced hydrogen and electricity could be utilized in own process, increasing its final performance.
Resumo:
The osseointegration of porous titanium implants was evaluated in the present work. Implants were fabricated from ASTM grade 2 titanium by a powder metallurgy method. Part of these implants were submitted to chemical and thermal treatment in order to deposit a biomimetic coating, aiming to evaluate its influence on the osseointegration of the implants. The implants were characterized by Scanning Electron Microscopy (SEM), Electron Dispersive X-Ray Spectroscopy (EDS) and Raman Spectroscopy. Three coated and three control (uncoated) implants were surgically inserted into thirty albino rabbits' left and right tibiae, respectively. Tibiae samples were submitted to histological and histomorphometric analyses, utilizing SEM, optical microscopy and mechanical tests. EDS results indicated calcium (Ca) and phosphorous (P) at the surface and Raman spectra exhibited an intense peak, characteristic of hydroxyapatite (HA). Bone neoformation was detected at the bone-implant interface and inside the pores, including the central ones. The mean bone neoformation percentage in the coated implants was statistically higher at 15 days, compared to 30 and 45 days. The mechanical tests showed that coated implants presented higher resistance to displacement, especially after 30 and 45 days.
Resumo:
Paleogene sediments of this region represent a significant source of water for urban, industrial and agricultural activities. This basin is part of the Southeastern Brazilian Continental Rift, which occupies a large portion of this geographical area. This study aims to present the evolution of the natural Paleogene landscape, through an analysis of its stratigraphic intcrops and underground portions based on the concept of facies and facies associations. A total of nine clastic and separate lithofacies were recognized and grouped into two main facies associations. These data suggest the existence of two depositional interdigitated systems: fluvial braided fans, which were predominant in parts of the northern and central area, and another composed of lacustrine sediments found in its central-south region. The paleogeography herein outlined will help considerably in the detection of new areas for mineral and water resources prospection, as well as in urban planning projects of this region.
Resumo:
A porous material for bone ingrowth with adequate pore structure and appropriate mechanical properties has long been sought as the ideal bone-implant interface. This study aimed to assess in vivo the influence of three types of porous titanium implant on the new bone ingrowth. The implants were produced by means of a powder metallurgy technique with different porosities and pore sizes: Group 1 = 30% and 180 μm; Group 2 = 30% and 300 μm; and Group 3 = 40% and 180 μm. Six rabbits received one implant of each type in the right and left tibiae and were sacrificed 8 weeks after surgery for histological and histomor-phometric analyses. Histological analysis confirmed new bone in contact with the implant, formed in direction of pores. Histomorphometric evaluation demonstrated that the new bone formation was statistically significantly lower in the group G1 than in group G3, (P = 0.023). Based on these results, increased porosity and pore size were concluded to have a positive effect on the amount of bone ingrowth.
Resumo:
The main aim of this study was to develop dense and conducting SnO 2 ceramics without precipitated phases on the grain boundaries, which was verified using field emission scanning microscopy (FE-SEM) coupled with an energy-dispersive X-ray spectroscopy (FE-SEM/EDS). Two sample groups were investigated, where the first sample group was doped with zinc while the second one was doped with cobalt. The ceramics were prepared using the oxides mixture method and the sintering was carried out in a conventional muffle oven as well as in microwave oven. The results obtained were found to be similar regarding the relative density for the two sintering methods while time and temperature gains were observed for the microwave sintering method. The relative densities obtained were nearly 95%, for the two sintering methods. Concerning the electrical characterization measurements-electric field x current density as well as the environment temperature, the ceramics obtained through the conventional sintering method presented non-ohmic behavior. For the microwave sintered ceramics, we observed an ohmic behavior with electrical resistivity of 1.3 Ωcm for the samples doped with ZnO/Nb 2O 5 and 2.5 Ωcm for that of the samples doped with CoO/Nb 2O 5. The FE-SEM/EDS results for the microwave sintered ceramics indicated a structure with a reduced number of pores and other phases segregated at the grain boundaries, which leads to a better conductive ceramic than the conventional oven sintered samples. The dilatometry analysis determined the muffle sintering temperature and the difference between the densification of cobalt and zinc oxides. The addition of niobium oxide resulted in the decrease in resistivity, which thus led us to conclude that it is possible to obtain dense ceramics with low electrical resistivity based on SnO 2 using commercial oxides by the oxides mixture technique and the microwave oven sintering method. Copyright © 2011 American Scientific Publishers All rights reserved.
Resumo:
Purpose: To assess the safety and efficacy of transitioning patients whose intraocular pressure (IOP) had been insufficiently controlled on prostaglandin analog (PGA) monotherapy to treatment with travoprost 0.004%/timolol 0.5% fixed combination with benzalkonium chloride (TTFC). Methods: This prospective, multicenter, open-label, historical controlled, single-arm study transitioned patients who had primary open-angle glaucoma, pigment dispersion glaucoma, or ocular hypertension and who required further IOP reduction from PGA monotherapy to oncedaily treatment with TTFC for 12 weeks. IOP and safety (adverse events, corrected distance visual acuity, and slit-lamp biomicroscopy) were assessed at baseline, week 4, and week 12. A solicited ocular symptom survey was administered at baseline and at week 12. Patients and investigators reported their medication preference at week 12. Results: Of 65 patients enrolled, 43 had received prior travoprost therapy and 22 had received prior nontravoprost therapy (n = 18, bimatoprost; n = 4, latanoprost). In the total population, mean IOP was significantly reduced from baseline (P = 0.000009), showing a 16.8% reduction after 12 weeks of TTFC therapy. In the study subgroups, mean IOP was significantly reduced from baseline to week 12 (P = 0.0001) in the prior travoprost cohort (19.0% reduction) and in the prior nontravoprost cohort (13.1% reduction). Seven mild, ocular, treatment-related adverse events were reported. Of the ten ocular symptom questions, eight had numerically lower percentages with TTFC compared with prior PGA monotherapy and two had numerically higher percentages with TTFC (dry eye symptoms and ocular stinging/burning). At week 12, TTFC was preferred over prior therapy for 84.2% of patients (48 of 57) by the patients themselves, and for 94.7% of patients (54 of 57) by their physicians. Conclusion: When TTFC replaced PGA monotherapy in patients whose IOP had been uncontrolled, the outcome was a significant reduction in IOP and an acceptable safety and tolerability profile. Most patients and investigators preferred TTFC to prior PGA monotherapy. © 2012 Costa et al, publisher and licensee Dove Medical Press Ltd.
Resumo:
Management systems affect soil structure, causing changes in porosity that can influence water infiltration into the soil. This study aimed to evaluate the effect of different management systems on the porosity and water infiltration in Distroferric Red Nitosol with clay texture. The management systems were: conventional with disc plow + two soft harrowing, conventional with heavy disc harrow + two soft harrowing, no tillage and fallow. The following attributes: porosity, pore shape and water infiltration velocity into the soil were determined. Management systems such as no-tillage, conventional with disc plow and heavy disc harrow, and fallow modify the porosity and the shape of pores of a Distroferric Red Nitosol, influencing water infiltration, which was favored in no-tillage for the greater presence of elongated pores.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Silver nanoparticles have high temperature stability and low volatility, and at the nanoscale are known to be an effective antifungal and antimicrobial agent. The present investigation involves the synthesis of silver nanoparticle/carboxymethylcellulose nanocomposites. The nanoparticles synthesised in this study had sizes in the range of 100 and 40 nm. The nanocomposites formed by a combination of metallic nanoparticles and carboxymethylcellulose were characterised by contact angle measurements, solubility tests, thermal and mechanical analyses, and morphological images. Improvements in the hydrophobic properties were observed with inclusion of the nanoparticles in the nanocomposites, with the best results occurring after the addition of 40 nm nanoparticles in a carboxymethylcellulose matrix. The silver nanoparticles tend to occupy the empty spaces in the pores of the carboxymethylcellulose matrix, inducing the collapse of these pores and thereby improving the tensile and barrier properties of the film. Copyright © 2013 American Scientific Publishers All rights reserved.
Resumo:
The catalytic properties of monomodal microporous and bimodal micro-mesoporous zeolites were investigated in the gas-phase dehydration of glycerol. The desilication methodology used to produce the mesoporous zeolites minimized diffusion limitations and increased glycerol conversion in the catalytic reaction due to the hierarchical system of secondary pores created in the zeolite crystals. The chemical and structural properties of the catalyst were studied by X-ray diffraction, nitrogen adsorption-desorption isotherms, NH3-TPD and pyridine chemisorption followed by IR-spectroscopy. Although the aim was to desilicate to create mesoporosity in the zeolite crystals, the desilication promoted the formation of extra-framework aluminum species that affected the conversion of glycerol and the products distribution. The results clearly show that the mesoporous zeolites with designed mesopore structure allowed a rapid diffusion and consequently improved the reaction kinetics. However, especial attention must be given to the desilication procedure because the severity of the treatment negatively interfered on the Brønsted and Lewis acid sites relative concentration and, consequently, in the efficiency of the catalysis performed by these materials. On the other hand, during the catalytic reaction, the intracrystalline mesopores allowed carbonaceous compounds to be deposited herein, resulting in less blocked micropores and catalysts with higher long-term stability.
Sintering of porous alumina obtained by biotemplate fibers for low thermal conductivity applications
Resumo:
In this research report, a sintering process of porous ceramic materials based on Al2O3 was employed using a method where a cation precursor solution is embedded in an organic fibrous cotton matrix. For porous green bodies, the precursor solution and cotton were annealed at temperatures in the range of 100-1600°C using scanning electron microscopy (SEM) and thermogravimetric (TG) analysis to obtain a porous body formation and disposal process containing organic fibers and precursor solution. In a structure consisting of open pores and interconnected nanometric grains, despite the low porosity of around 40% (calculated geometrically), nitrogen physisorption determined a specific surface area of 14m2/g, which shows much sintering of porous bodies. Energy dispersive X-ray (EDX) and X-ray diffraction (XRD) analytical methods revealed a predominant amount of α-Al2O3 in the sintered samples. Thermal properties of the sintered Al2O3 fibers were obtained by using the Laser Flash which resulted in the lower thermal conductivity obtained by α-Al2O3 and therefore improved its potential use as an insulating material. © 2012 Elsevier Ltd.
Resumo:
This paper proposes a response surface methodology to evaluate the influence of the particle size and temperature as variables and their interaction on the sulfation process using two Brazilian limestones, a calcite (ICB) and a dolomite (DP). Experiments were performed according to an experimental design [central composite rotatable design (CCRD)] carried out on a thermogravimetric balance and a nitrogen adsorption porosimeter. In the SO 2 sorption process, DP was shown to be more efficient than ICB. The best results for both limestones in relation to conversion and Brunauer-Emmett-Teller (BET) surface area were obtained under central point conditions (545 μm and 850 C for DP and 274 μm and 815 C for ICB). The optimal values for conversion were 52% for DP and 37% for ICB. For BET surface area, the optimal values were 35 m2 g-1 for DP and 45 m2 g-1 for ICB. A relationship between conversion and pore size distribution has been established. The experiments that showed higher conversions also exhibited more pores in the region between 20 and 150 Å and larger BET surface area, indicating that the amount of smaller pores may be an important factor in the reactivity of limestones. © 2013 American Chemical Society.
Resumo:
A simplified procedure for the preparation of immobilized beta-amylase using non-purified extract from fresh sweet potato tubers is established in this paper, using differently activated agarose supports. Beta-amylase glutaraldehyde derivative was the preparation with best features, presenting improved temperature and pH stability and activity. The possibility of reusing the amylase was also shown, when this immobilized enzyme was fully active for five cycles of use. However, immobilization decreased enzyme activity to around 15%. This seems to be mainly due to diffusion limitations of the starch inside the pores of the biocatalyst particles. A fifteen-fold increase in the Km was noticed, while the decrease of Vmax was only 30% (10.1 U mg-1 protein and 7.03 U mg-1 protein for free and immobilized preparations, respectively). © 2013 Elsevier Ltd.
Resumo:
Using a genuinely tridimensional approach to the time-dependent Ginzburg-Landau theory, we have studied the local magnetic field profile of a mesoscopic superconductor in the so-called SQUID geometry, i.e., a square with a hole at the center connected to the outside vacuum through a very thin slit. Our investigation was carried out in both the Meissner and the mixed state. We have also studied the influence of the temperature on the space distribution of the local magnetic field. © 2013 IOP Publishing Ltd.
Resumo:
Supercritical drying (SCD) and hydrophobic ambient pressure drying (APD) aerogels were prepared from hydrolysis of tetraethoxysilane in solutions of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (P123) in the range of composition below the threshold for the ordered mesoporous silica precipitation. APD was carried out after silylation of wet gels with trimethylchlorosilane (TMCS) or hexamethyldisilazane (HMDZ). The samples were analyzed by small-angle X-ray scattering and nitrogen adsorption. Wet gels are formed by mass-fractal domains, with fractal dimension close to 2, and larger pores superposing the pores belonging to the fractal structure in case of high P123 concentrations. Aerogels exhibit smaller-sized mass-fractal domains with larger mass-fractal dimension accounting for some porosity elimination on drying. The pore volume of the aerogels increases significantly with the P123 amount and it is even larger in the APD aerogels than in the SCD aerogels. © 2013 Elsevier B.V. All rights reserved.